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Abstract—Item information, such as titles and attributes, is
essential for effective user engagement in e-commerce. However,
manual or semi-manual entry of structured item specifics often
results in inconsistent data quality, errors, and a time-intensive
process, particularly for Customer-to-Customer sellers. Generat-
ing these descriptions directly from item images offers a promis-
ing solution. Existing retrieval-based solutions partially address
these issues, but often fall short in capturing fine-grained visual
details and handling niche or specialized product categories.
To address these challenges, we propose Optimized Preference-
Based AI for Listings (OPAL), a novel framework to directly
generate schema-compliant, high-quality item descriptions from
images using a fine-tuned multimodal-large language model
(MLLM). OPAL addresses key challenges in multimodal learning
in e-commerce, such as modality gaps and the need for fine-
grained contextual understanding. Specifically, OPAL integrates
novel data refinement methods—MLLM-Assisted Conformity
Enhancement and LLM-Assisted Contextual Understanding—to
align textual and visual information while addressing the granu-
larity of contextual understanding. We leverage visual instruction
tuning and direct preference optimization to fine-tune MLLM,
mitigating hallucination risks and improving model performance
across different backbones. Through extensive experiments on
real-world e-commerce datasets, we demonstrate that OPAL con-
sistently outperforms baseline solutions in generation quality and
completion rates. These results highlight OPAL’s effectiveness
in bridging the modality gap and elevating the standard of
automated listing optimization in e-commerce.

Index Terms—Multimedia Systems, E-commerce, Large Lan-
guage Models

I. INTRODUCTION

In e-commerce, structured item information are essential
for effective search, navigation, and user experience enhance-
ments. These descriptions, comprising an informative title and
a series of aspect name-value pairs (e.g., "Department: Men,”
”Brand: Nike”) are typically provided by sellers during the
listing process. However, manual or semi-manual entry often
results in inconsistent data quality, with errors, omissions,
and irrelevant information. This process is also time-intensive,
especially for Customer-to-Customer (C2C) sellers, dissuading
them from listing more items. However, the images of items
are rich in information and intent, using the images to infer
obvious information aids the seller in filling relevant informa-
tion faster and with more reliability. Using images to populate
item information makes the listing creation more of a review
process than a data entry process.
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Fig. 1: Overview of the proposed use case. When a user up-
loads an image, OPAL generates a structured output including
title and aspect name-value pairs. This structured output is pre-
filled for the user, streamlining the listing process and ensuring
schema-compliant, high-quality descriptions.

Generating structured descriptions from item images offers
a promising solution, but faces significant challenges, espe-
cially in C2C scenarios with informal photography, cluttered
backgrounds, and varied shooting styles. Although advanced
vision models such as YOLO [1] and SAM [2] excel at
object detection, they fail to capture the seller’s intent or
complex attribute relationships. Retrieval-based methods, such
as CLIP [3], partially address this by matching images to
predefined product candidates, and recent multimodal large
language models (MLLM) approach, IPL [4] extends this by
generating text based on image retrieval results. However,
these inventory-dependent methods often fall short in accu-
rately capturing fine-grained visual details and struggle with
less common or specialized product categories due to sparse
domain-specific information.

Rather than relying on similarity-based [5] retrieval systems,
we propose a novel approach that fine-tunes an MLLM to
directly generate structured item descriptions, as illustrated in
Figure 1. Our method produces titles and aspects grounded
in item images while addressing three critical criteria: (1)
Alignment with Seller Intent (capturing the essence of what
the seller wants to list), (2) Alignment with Image Information
(reflecting visually inferable details such as color or brand),
and (3) Conformity to E-commerce Standards (adhering to



predefined schemas for aspects like "Model” or “Publisher”).
The proposed method consumes images and extracts visually
deductible information, infers relationships, and aligns with
knowledge and ontology structure.

Training of MLLM requires high-quality image-text pairs
that accurately map product details to their visual context.
Although general-purpose datasets like MS COCO [6], Con-
ceptual Captions [7], and Flickr30k [8] are well curated and
annotated, e-commerce datasets, especially the product inven-
tory, are inherently noisy and exhibit a significant modality
gap. Textual descriptions often include irrelevant information,
such as promotional statements, while visual content may
inadequately represent key attributes (e.g., storage capacity
or dimension). This misalignment increases the risk of hal-
lucination, leading to unreliable outputs. Moreover, the level
of granularity required for item recognition in e-commerce far
exceeds that of public datasets. Without explicit reinforcement
of contextual understanding, the generalizability of the trained
MLLM remains limited, compromising its performance in
real-world scenarios.

To address these challenges, we developed Optimized
Preference-Based AI for Listings (OPAL) equipped with a
comprehensive training pipeline that integrates visual and tex-
tual signals to produce high quality listings compliant with the
schema (Figure 1). Our approach mitigates the modality gap
in the e-commerce data while optimizing model performance
through visual instruction tuning. The model is further trained
with direct preference optimization to enhance contextual un-
derstanding. Our contributions can be summarized as follows.

« We analyze the key challenges of multimodal learning in
e-commerce, focusing on both the modality gap and the
granularity of contextual understanding.

e We propose an effective training strategy (OPAL) to
address the modality gap and enhance contextual un-
derstanding through refined data and model training.
Extensive experiments demonstrate that this strategy con-
sistently improves generation quality across different
MLLM backbones.

« We showcase OPAL’s superiority over in-house solutions,
achieving significant improvements in generation quality
and completion rates.

The proposed modality-aligned vision-language model is
designed to power an API that extracts and infers structured
item information directly from images. These structured out-
puts can then be applied across various e-commerce applica-
tions, such as product listing generation and search relevance
enhancement.

II. RELATED WORKS

Attribute Value Extraction. Attribute value extraction is
crucial in e-commerce for structuring product information
from unstructured text. Traditional methods relied on rule-
based systems and sequence labeling models like CRFs [9],
which demanded extensive manual effort and struggled with
scalability. The introduction of transformer-based models, such
as BERT [10], significantly improved extraction accuracy by

leveraging contextual embeddings. Frameworks like Open-
Tag [11] introduced pointer networks to handle noisy and frag-
mented product text. More recently, LLM-based approaches
like ExtractGPT [12] have enabled zero-shot and few-shot
extraction, demonstrating strong generalization to unseen at-
tribute values. Multilingual models such as GAVEL [13]
further extend this capability to diverse markets and languages.

Large Language Models (LLMs) Large Language Models,
including GPT-4 [14], PaLM [15], and LLaMA [16], have
transformed natural language understanding and generation
tasks. In e-commerce, LLMs have been adapted for product
categorization, attribute-value generation, personalized rec-
ommendations, and listing optimization [17], [18]. Domain-
specific LLMs like e-LLaMA [19] improve performance by
incorporating proprietary knowledge while preserving data
security. Strategies involving schema alignment and user intent
modeling further increase the utility of LLMs in structured
prediction and personalization tasks [20]-[22].

Multimodal Large Language Models (MLLMs). MLLMs
integrate visual and textual modalities to enable comprehen-
sive multimodal reasoning. Early models such as CLIP [3] and
ALIGN [23] introduced contrastive learning frameworks to
align image and text embeddings for robust zero-shot transfer.
More advanced MLLMs like LLaVA [24] QwenVL [25] and
InternVL [26] combine visual encoders with LLMs to enable
tasks such as visual question answering, image-conditioned
generation, and multimodal dialogue. These models are espe-
cially relevant in e-commerce scenarios where both product
images and textual descriptions are available and complemen-
tary.

MLLMs for E-commerce Applications. MLLMs have in-
creasingly been applied to e-commerce for multimodal product
understanding, including title rewriting, attribute extraction,
and visual-grounded content generation. For instance, mod-
els like PUMGPT [27] and VL-GPT [28] leverage visual
context to improve contextual understanding. E-commerce-
specific MLLMs such as IPL [4] integrate product images,
attributes, and category information through image retrieval
of the e-commerce database. However, challenges persist due
to noisy input data, weak alignment between visual and textual
modalities, and inconsistency in attribute schemas [29]. Our
work addresses these limitations by improving data alignment
and leveraging MLLMs in a structured, schema-aware fashion.

III. KEY CHALLENGES IN MULTIMODAL ALIGNMENT AND
CONTEXTUAL UNDERSTANDING IN E-COMMERCE

Modality Gap The modality gap is well-acknowledged
in multimodal learning [30]-[32] and refers to the inherent
differences in representation, structure, and distribution across
modalities like text, image, audio, or video. This gap poses
significant challenges for e-commerce datasets, where textual
descriptions and image representations often lack alignment,
which can result in hallucinations, where models generate
plausible but incorrect information due to ambiguous or miss-
ing visual representation. Key challenges include: 1) Limi-



Product Image

Product Description

Titile:
New Balance 9060 "Sun Glow Team Sky Blue" Size
4M-13M U90600GB SHIP FAST

Aspects:

{Brand: New Balance, Color: Orange, Department:
Men, Model: New Balance 9060, Release Year:
2024, Shoe Shaft Style: Low Top, Style:Sneaker,
Style Code: U90600GB, Type: Athletic, US Shoe
Size: CHECK}

ﬂ Step 1: Visual-Textual Content Conformity Enhancement ﬂ

Open Source MLLM

(S — 1

Prompt (Visual Attribute Grounding):
| Given an image, product title, attribute key-value |

MLLM-Assisted Conformity Enhancement (MACE)

Titile:
New Balance 9060 "Sun Glow Team Sky Blue" Low
Top Sneaker

pairs, and category, return a JSON with a revised
title and filtered aspects. (1) Keep only aspects
that are visually identifiable or inferable (e.g.,
color, style, brand). (2) Exclude non-visual details
(e.g., size, weight, SKU, warranty). (3) Rewrite the
title to match the visible content—remove
promotional, pricing, and seller-specific info. (4) |
Follow category rules (e.g., include player name

for trading cards if visible).

ﬂ Step 2: C ur i i 1t ﬂ

LLM-Assisted Contextual Understanding (LACU)

Aspects:

{Brand: New Balance, Color: Orange, Department:
Men, Model: New Balance 9060, Shoe Shaft Style:
Low Top, Style: Sneaker, Type: Athletic}

Q1: What type of shoe is this?

A1: This is a low-top sneaker.

Q2: Can you identify the specific model of the
sneaker?

A2: The sneaker is a New Balance 9060, which is a
specific model within the New Balance product line.
Q3: What it the colorway of the sneaker?

A3: The pattern in the sneaker suggets that the
colorway is "Sun Glow Team Sky Blue".

The model is given a single product image, a title,
category, and structured attributes. It is asked to |
generate a 5-sentence visual description, then
simulate a multi-turn conversation in JSON format |
where a human asks 4+ visually grounded
questions about the item (e.g., object type, count,

| color, material). Responses must be based solely
on visible evidence or confident visual
inference—ignoring metadata like price, size, or |
seller info. Complex or usage-based questions

Fig. 2: Overview of the modality gap in e-commerce prod-
uct data and the proposed MACE-LACU pipeline. The top
row illustrates the modality gap commonly observed in e-
commerce listings: text descriptions often include information
not visually grounded in the image, such as “Size 4M-
13M” and seller-specific claims like “SHIP FAST.” Training
vision-language models on such misaligned data can lead to
hallucinations during inference (see Figure 3), as visually
unverifiable details could vary across listings. To mitigate this,
each image—text pair is processed by MACE to filter out
non-visual attributes and rewrite the product title based on
image-grounded features. Then, LACU generates multi-turn,
visually grounded conversations that reinforce item-specific
contextual understanding. The full pipeline consumes an item
image, title, category, and structured attributes, and outputs
a harmonized, vision-consistent representation for improved
multimodal understanding. Both prompts used in MACE and
LACU are simplified due to space constraints.

tations of Visual Content: Many product attributes are not
visually discernible, such as precise specifications (e.g., “7120
cm X 60 cm x 75 c¢cm” for furniture dimensions), materi-
als (e.g., “100% cotton” for clothing), or unique identifiers
(e.g., “ABI1235-567” for sneakers). Safety certifications and
technical details like processor types or battery capacities
also can not be represented by images solely unless with
explicit textual descriptions in the image. 2) Text-Visual
Misalignment: E-commerce listings often include irrelevant
or distracting textual elements, such as promotional content

(e.g., “50% Off!”), shipping details, or decorative emojis.
These details are frequently misaligned with visual content,
leading to challenges in training MLLMs. We demonstrate
such modality gap using e-commerce example data in Figure 2.

Contextual Understanding Gap in MLLM Pretraining
Most MLLMs are pretrained on open-source vision-language
datasets such as MS-COCO [6], Conceptual Captions [7],
and Open Images [33]. While effective for general-purpose
multimodal understanding, these datasets lack the contextual
specificity and attribute granularity required for e-commerce
applications. Their captions tend to be surface-level—e.g.,
“a man riding a bike” or “a red handbag on a table”—and
rarely capture fine-grained product attributes critical to struc-
tured commerce systems. Examples include shoe models (e.g.,
“Nike Dunk Low,” “New Balance 5507), collectible brands
(e.g., “Kup Stax,” “Funko Pop!,” “Bearbrick”), toy character
names (e.g., “Grogu (Baby Yoda),” “Optimus Prime,” “Elsa
from Frozen”), or author names in collectible books (e.g.,
“K.T. Oslin,” “Haruki Murakami”). These attributes are es-
sential for item selling in e-commerce. As a result, MLLMs
pretrained on generic datasets often struggle to generalize to
commerce-specific tasks that demand precise visual-textual
grounding and context-sensitive reasoning.

IV. OPTIMIZED PREFERENCE-BASED Al FOR LISTINGS

To address the challenges of multimodal learning in e-
commerce, we propose the Optimized Preference-Based Al for
Listings (OPAL) model. OPAL integrates data enhancement,
visual instruction tuning, and preference optimization to bridge
modality gaps and improve contextual understanding. Its data
pipeline comprises two components: MLLM-Assisted Con-
formity Enhancement (MACE) and LLM-Assisted Con-
textual Understanding (LACU). MACE aligns visual and
textual data by refining noisy e-commerce inputs, while LACU
enriches context through domain-specific, multi-turn conversa-
tions. As illustrated in Figure 2, these methods produce well-
aligned, context-rich training data. Visual instruction tuning is
further improved using Direct Preference Optimization (DPO),
enabling the model to generate accurate, schema-compliant
titles and aspects for e-commerce listings.

A. MLLM-Assisted Conformity Enhancement

To address the modality gap in e-commerce data, we
introduce MACE, a preprocessing pipeline that leverages a
very large MLLM, InternVL2.5-78B, to refine the alignment
between visual and textual modalities. The key idea is to en-
force visual conformity by filtering out textual information that
cannot be visually confirmed or reasonably inferred from the
image. Given a product image and its associated description
(including title and structured aspects), the MLLM is prompted
to perform two operations: (2) it rewrites the title by removing
tokens that are not grounded in visual evidence; (2) it drops
aspect key—value pairs that cannot be confirmed or inferred
from the image.

A simplified example of this prompting strategy is illustrated
in Figure 2, Step 1. MACE process removes irrelevant or



TABLE I: Demonstration of the procedure for generating preference pairs used in DPO training. An MLLM (InternVL2.5-78B)
evaluates the generated title and aspects against the visually and textually aligned item information using an evaluation prompt.
If the generation is judged as Incorrect or Mostly Incorrect, the item information (chosen) and model output (rejected) form a
preference pair for DPO training. In this example, the model incorrectly treats a golf head cover as an animal toy (highlighted).

Image Example (Simplified) Judge Prompt

MACE Aligned (Chosen)

Model Output (Rejected) Judge

Task:

Evaluate how accurately the predicted title
and aspects match the {GOLDENTITLE} and
{GOLDENASPECTS}.

Visual Check:

Assess visible properties in the image (color,

shape, text, logos).

Aspect Check:

Match predicted aspects with visible properties
and labeled aspects.

Title Check:

Check if the predicted title matches the item.
Judgment:

Label each aspect as “Correctly Identified” or
”Not Correctly Identified” and the title as "Cor-

Title:

Sloth  Golf Wood Headcover
Fit Driver Fairway Woods Club
Plush Head Covers

Aspects:
{Brand Unbranded,
Sport/Activity Golf, Type

Wood Head Covers, Vintage : No}

Title:
Sloth Plush Doll
Animal Toy

Stuffed

Aspects:

{Brand : Unbranded, Character :
Sloth, Material : Plush, Theme :
Animation, Type : Action Figure }

Incorrectly
Generated

rectly Matched” or "Not Correctly Matched.”
Final Evaluation Criteria:

Correctly Generated (95-100%) Mostly Cor-
rectly Generated (80-94%) Partially Correctly
Generated (50-79%) Mostly Incorrectly Gener-
ated (30-49%) Incorrectly Generated (j30%)

unverifiable details, such as shoe size, style code, or seller-
specific information like “SHIP FAST”. This results in a
conformity-enhanced description that is tightly coupled with
the visual content. By training downstream models on these
visually grounded inputs, MACE enforces a stricter visual-to-
text mapping and significantly reduces the modality gap.

B. LLM-Assisted Contextual Understanding

Although MACE effectively aligns text and image modali-
ties, it does not fully capture the granular contextual nuances
essential for e-commerce, many of which fall outside the scope
of standard multimodal LLM pretraining. To address this lim-
itation, LACU enhances MACE by generating conversational
datasets using the textual LLM, LLaMA 3.1-Instruct [34].
Inspired by common practices in visual instruction tuning [24],
we utilize this language model to simulate multi-turn dialogues
that emulate interactions between a seller and a prospective
buyer. These conversations are intentionally constructed to
cover a broad (as many as possible) range of product aspects,
thereby enriching the model’s contextual understanding. A
simplified example of the prompt used to query the textual
LLM is shown in Figure 2 - Step 2. The synthetic dialogues are
designed to span diverse domain-specific queries and detailed
product descriptions, equipping the model to achieve a finer-
grained understanding of item semantics from the image.

C. Visual Instruction Tuning with DPO

We fine-tune our MLLM backbones using a visual in-
struction tuning on datasets derived from MACE and LACU.
For each image-instruction pair, the model is optimized to
minimize the loss on the generated outputs, thereby learning
to produce accurate and contextually grounded product titles
and attributes based on visual input. Specifically, for each
(image-instruction, response) pair (x,y), the model is trained

to minimize the negative log-likelihood of the output sequence
using standard supervised fine-tuning:

T

»CVisual Instruction Tuning — — Z 10g Py (yt ‘ Y<t, LU) (D
t=1

We then apply Direct Preference Optimization (DPO) [35]
to further enhance the model’s contextual understanding and
reduce hallucinations. Specifically, after visual instruction tun-
ing, we judge the model’s generation on a subset of the train-
ing data using a large vision-language model, InternVL2.5-
78B. This judge model receives the image, the ground truth
product description, and the model-generated description, and
classifies the generation into one of five categories: Cor-
rectly Generated, Mostly Correctly Generated, Partially Cor-
rectly Generated, Mostly Incorrectly Generated, or Incorrectly
Generated. Generations deemed to have incorrect contextual
understanding (labeled as Mostly Incorrectly Generated or
Incorrectly Generated) are used to construct preference pairs
for DPO training, where the ground truth is treated as the
chosen output and the model prediction as the rejected output.
By creating the pair (&, Ychosens Yrejected). The sigmoid-based
DPO loss encourages the model to assign a higher likelihood

to the preferred output:

Epref = - 1Og0' (B [log Uy (ychosen ‘ l‘) - log Uy (yrejected | JJ)])
2)
A KL-regularization term is included to constrain the up-
dated model to stay close to a reference policy:

EDPO = Epref + A-KL (7T9 || 7Tref) 5 (3)

where g is the current policy, m.s is the reference policy,
o(+) is the sigmoid function, 8 is a temperature parameter
controlling preference sharpness, and \ weights the optional



KL regularization term. A simplified illustration of this pro-
cedure, along with an example prompt, is provided in Table I.

V. EXPERIMENTS
A. Experiment Setup

1) Training and Evaluation Datasets:: We collect data
comprising millions of product entries from a world-leading
e-commerce platform. After an extensive cleaning process,
we retain one million valid image—description pairs (titles
and aspects). For resource efficiency, only the main image is
retained for each product.

Task-Specific Instruction Dataset: Using MACE, we align
the data with product images and textual description, ensuring
conformity to the e-commerce schema. This process results
in 890K high-quality image—instruction pairs in JSON format,
each containing a refined title and corresponding aspect-value
pairs.

Contextual Understanding Dataset: To enhance contex-
tual understanding, we apply LACU to generate approximately
800K image—conversation pairs. Each pair simulates multi-
turn buyer-seller interactions, typically involving at least five
conversational rounds. These dialogues provide a rich source
of domain-specific and contextually diverse training data. Both
the instruction and conversational datasets are merged during
training.

Preference Optimization Dataset: We use a large MLLM
to evaluate each backbone’s responses on a subset of the
training data (200K). We then select 20K preference pairs for
each backbone, each containing an instruction paired with a
preferred (chosen) and a dispreferred (rejected) response.

Evaluation Dataset: We collect an independent dataset of
100K diverse samples comprising images and textual infor-
mation (titles and aspects) from the e-commerce inventory.
These samples undergo human evaluation to ensure accurate
ground truth, serving as the benchmark for all downstream
analysis. Notably, the dataset contains niche items that appear
only after the model has been trained, providing a meaningful
test of generalization.

2) Implementation Details: We adopt a two-stage train-
ing procedure consisting of visual instruction tuning fol-
lowed by DPO. All experiments are conducted using the
LLaMA-Factory [36] framework with full-parameter fine-
tuning. The vision encoder is frozen throughout. Training
is performed on 8xA100 GPUs (80GB) using DeepSpeed
ZeRO-3 [37] and bfloat16 precision. For visual instruction
fine-tuning, the maximum token length is set to 4,096. We
use a per-device batch size of 2 with gradient accumulation
over 16 steps. Models are trained for 1 epoch using AdamW
with a learning rate of 1 x 107°, cosine learning rate decay,
and a 10% warmup ratio. For DPO, the pairwise preference
dataset is formatted with the same prompt template. The model
is optimized using a sigmoid-based DPO loss. Training is
conducted for 1 epoch with a per-device batch size of 1 and
gradient accumulation over 8 steps. We use a learning rate of
5 x 1076 and the same scheduler as in the previous stage.

TABLE II: Performance comparison of different MLLM back-
bones and training strategies. An in-context learning evaluation
for InternVL2.5-78B is also included for reference.

Strategy

Backbone Rouge-L Aspect Schema
MACE LACU DPO Fl1 Fl1 Recall
InternVL2.5-78B In-context 0.25 0.30 0.46
- - 0.36 0.33 0.49
v - - 0.43 0.35 0.53
LLaVA-NeXT-7B v v - 048 037 0.54
v v v 0.56 0.49 0.74
- - - 0.39 0.38 0.53
v - - 0.48 0.40 0.56
Qwen2-VL-78 v v - 0.50 0.42 0.56
v v v 0.61 0.50 0.85
- - - 0.42 0.45 0.71
v - - 0.52 0.48 0.61
InternVL2.5-8B v v - 0.53 0.50 0.62
v v v 0.63 0.52 0.82

B. Quantitative Evaluation

1) Evaluation Metrics: We assess the quality of each gener-
ated ftitle + aspect—JSON string using one holistic metric and
two targeted metrics that focus on aspect-level correctness.
These collectively evaluate both the fluency of the structured
output and its alignment with e-commerce expectations.

ROUGE-L F1. To evaluate the overall quality of the
generated JSON string as a complete entity, we use ROUGE-
L F1, which captures both contextual coherence and structural
fidelity. Given the predicted token sequence sP™*? and the
reference s, we first compute the length [ of their longest
common subsequence (LCS). Then:

l l

Prcs = w, Rics = @7
2Pcs R
ROUGE-L F] = _~-LCSTWLCS
Prcs + Rics

Since the entire structured string is compared, this metric
rewards both semantic accuracy and adherence to the expected
format.

Aspect-Matching F1. To further evaluate the model’s per-
formance on aspect prediction, we extract and normalize
all aspect name-value pairs from both the prediction and
the reference. Let AP™Y and A™f denote the predicted and
reference aspect sets, respectively. We define:

|Apred ) Aref| |Apred ) Aref|
Pagp = | Apred| Rasp = | Aref| )
2PaspRasp
Aspect F1 = ——————— .
P Pasp + Rasp

This fine-grained metric reflects how accurately the model
identifies and reproduces key attribute pairs, which is central
to downstream applications.

Schema-Compliance Recall. Finally, we evaluate whether
the predicted aspect keys conform to the platform’s predefined
schema. This is critical for ensuring that the outputs can be
directly consumed by the e-commerce backend. Let S be the



set of allowed schema keys and KP™? the predicted keys.

Then:
Hk € KPred | ke S}

|Kpred |

This metric reports the proportion of predicted keys that align
with the schema, reflecting practical deployability in product
listings.

2) Effectiveness of OPAL Generalizes Across MLLM Back-
bones: We evaluated OPAL using different MLLM backbones,
LLaVA-NeXT-7B [38], Qwen2-VL-7B [25], and InternVL2.5-
8B [39], on four variants: (1) Baseline: Raw product knowl-
edge without conformity alignment, (2) MACE: Data refined
to align textual and visual information, (3) MACE + LACU:
Further enriched data capturing detailed product context, and
(4) MACE + LACU + DPO: Enhanced contextual under-
standing through Direct Preference Optimization. As shown in
Table II, the proposed methods collectively improved genera-
tion quality, enhanced contextual understanding, and optimized
overall performance across all backbones. Specifically, models
trained with the full OPAL pipeline (MACE + LACU + DPO)
achieve at least 50% improvement in Rouge-L F1 (0.63 vs.
0.42) and at least 16% improvement in Aspect F1 (0.52 vs.
0.45) compared to models trained on unaligned data. While
higher scores consistently reflect improved generation quality,
we do not expect metrics like Rouge-L F1 or Aspect F1
to reach 1.0, as many items can have multiple valid titles
and aspect combinations. However, in this context, improve-
ments from moderate to higher scores are still meaningful.
Even though fine-tuned InternVL2.5-8B, using unaligned data,
shows good Schema Recall (aspect name), the low Rouge
F1 and Aspect F1 demonstrate significant hallucination in the
aspect value. We also compared with the common industrial
practice, in-context learning, using a much larger backbone
(InternVL2.5-78B), using category-specific demonstration ex-
amples. Despite the larger model size, in-context learning
showed significantly lower generation quality, underscoring
the advantages of OPAL’s fine-tuning approach for improving
contextual understanding.

Schemagecan =

C. Qualitative Evaluation

1) Effectiveness of the MACE and LACU Pipeline.: We
qualitatively illustrate the effectiveness of the MACE and
LACU pipeline by visualizing generation outputs at different
stages of the data refinement process in Figure 3. We evaluate
an MLLM (InternVL2.5-8B) trained under varying data prepa-
ration regimes, paralleling the quantitative trends reported in
Table II. When trained on raw, unaligned descriptions (Base-
line in Sec.V-B2), the model produces a significant number of
hallucinated attributes, limiting its applicability in real-world
settings. While applying MACE helps reduce hallucinations by
aligning image-text pairs (MACE), the model remains limited
in extracting fine-grained contextual cues, such as specific
shoe models, which are often underrepresented or missing
in pretraining corpora. Upon further incorporating visual-
grounded Q&A supervision through LACU (MACE + LACU),
the model demonstrates enhanced contextual comprehension

and more accurate visual attribute generation. The results
underscore the effectiveness of both MACE and LACU.

Trained Using Product Description Only:

Nike Dunk Low Retro PRM Shoes "Pollen" FB7910-700 Men's Sizes New

{ Brand: Nike, Character: Nike, Cleat Type: Rubber, Closure: Lace Up, Color:
Multicolor, ...... Department: Men, EU Shoe Size: Varies,..... Model: Nike Dunk
Retro Low ..... Style Code: FB7910-700,...... Hallucination....}

Hallucination: Character, Cleat Type, Model, Style Code ......

Trained Using MACE Only:

Nike Dunk Low Retro PRM Shoes - Wheat

P Dunk Retro Low, Product Line: Nike Dunk, Shoe Shaft Style: Low Top, Style:
Product Description (Golden) Sneaker, Type: Athletic } g ChEld

Poor Contextual Understanding: Model, Department...

Title: Nike Dunk Low SE Women's Shoes
Bronzine/Coconut Milk

Trained Using MACE + LACU:

Nike Dunk Low SE Women's Shoes

Aspectst: { Brand: Nike, Color: Multicolor,
Customized: No, Department: Women,
Model: Nike Dunk Low, Product Line: Nike
Dunk, Style: Sneaker, Type: Athletic}

{ Brand: Nike, Closure: Lace Up, Color: Multicolor, Department: Women, Model:
Nike Dunk Low, Occasion: Casual, Product Line: Nike Dunk, Shoe Shaft Style:
Low Top, Style: Sneaker, Type: Athletic }

| { Brand: Nike, Closure: Lace Up, Color: Wheat, Department: Men, Model: Nike

Product L

Fig. 3: Qualitative comparison of the MLLM (InternVL2.5-
8B) generated from different stages of the training (hallucina-
tion is highlighted in red).

2) OPAL Result Visualizations.: We further demonstrate the
generations from the OPAL framework (InternVL2.5-8B) in
Table III. These cases highlight the model’s ability to accu-
rately infer seller intent, extract fine-grained product aspects,
and generalize to niche items that fall outside its training
distribution. Notably, the first three examples were released
after April 2024 and were absent from the training data, which
was limited to sources available prior to March 2024. As
a result, image similarity-based retrieval methods would be
ineffective, given the lack of indexed product knowledge.

In the first example, the key identifying features, namely the
Coca-Cola and Paris Olympic icons, appear at the center of
an otherwise predominantly white tote bag. Retrieval-based
methods, even when the exact same bag is present in the
inventory but photographed from slightly different angles or
with varied shooting styles, tend to match such images to other
generic white tote bags. This often results in incorrect product
identification. The third example highlights OPAL’s ability to
capture fine-grained details, such as the PSA certification num-
ber, card grade, and unique identifier. Although these elements
occupy only a small portion of the image, they are critical
and highly relevant to sellers. OPAL not only identifies these
details but also infers contextual information, such as the card
manufacturer and its parallel/variety, even when such informa-
tion is not explicitly visible in the image. These capabilities
demonstrate OPAL’s strong contextual reasoning and its po-
tential to enhance product understanding in e-commerce. The
last two examples demonstrate OPAL’s robustness in handling
ambiguous images with limited visual cues regarding seller
intent. Retrieval-based methods frequently misidentify these
items by matching them to visually similar but semantically
incorrect products. In contrast, OPAL exhibits strong domain-
specific reasoning, generating accurate titles and aspect values
that align with the true intent of the seller.



TABLE III: Model outputs from the OPAL framework using
InternVL2.5-8B. Each row shows the input image, generated
title, and predicted aspects, highlighting the model’s ability to
interpret niche items and seller intent.

# Model Output (Title + Aspects)

Title: Coca-Cola 2024 Paris Summer Olympics
Tote Bag

Aspects: {Brand: Coca-Cola, Color: White,
Gender: Unisex Adult, Modified Item: No, Offi-
cially Licensed: Yes, Product: Tote Bag, Sport:
Soccer, Team: Olympics}

Title: Pokemon x Le Creuset Pokemon Special
Edition Coffee Mug Set

Aspects: {Brand: Le Creuset, Type: Coffee
Mug Set, Theme: Pokemon, Material: Ceramic,
Color: Multicolor, Number of Items in Set:
Five-Piece, Features: Dishwasher Safe}

Title: 2024 Donruss Optic Preview Pink Pulsar
Rated Rookie RC #303 J.J. McCarthy

Aspects: {Features: Rookie, Manufacturer:
Panini, Parallel/Variety: Pink, Season: 2024,
Set: 2024 Donruss Optic, Sport: Football, Type:
Sports Trading Card, Player: J.J. McCarthy,
Team: Minnesota Vikings, Card Number: 303,
Grade: PSA 10 GEM MT, PSA Certification
Number: 108300232}

Title: Solar LED Landscape Pathway Lights, 2
Lights, Dusk to Dawn, Waterproof, Garden
Aspects: {Brand: Unbranded, Bulb Type: LED,
Features: Dusk-to-Dawn, Waterproof, Power
Source: Solar, Style: Art Deco, Type: Deck/Step
Light}

Title: Soft Silicone Phone Case Cover with
Lanyard

Aspects:  {Brand: Unbranded, Compatible
Brand: For Apple, Design/Finish:
Luxury, Features: Shockproof, Material:
Silicone/Gel/Rubber, Type: Back Case}

M

TABLE IV: Offline comparison with baseline model

| Final Submission Rate | Conformity | Win Rate

OPAL (InternVL2.5-8B) ‘

+53.40% | +1050% | 60%

D. Comparison with a Baseline System

To further evaluate the performance of OPAL, we com-
pared it with a similarity-based baseline system leveraging
multimodal retrieval. This pipeline employs a large-scale mul-
timodal embedding model with a knowledge graph containing
over one billion edges, meticulously developed over an 18-
month period. The independent evaluation dataset comprises
thousands of actual listing sessions, each featuring high-quality
human annotations for titles and aspects. We employed three
metrics for this comparison: Final Submission Rate: Assesses
how effectively the model helps sellers complete listings when
images are uploaded using an in-house user traffic simula-
tion method. Conformity: Evaluated using a large MLLM

(InternVL2.5-78B) to measure alignment with ground truth
with alignment score from 1 to 5, similar as that in Table
I, where 5 represents correct generation and 1 represents
incorrect generation. Win Rate: Direct comparison with the
baseline system, rated by the same large MLLM to determine
if generation from the OPAL wins that from the baseline
model. As demonstrated in Table IV, OPAL outperforms the
baseline system by generating higher-quality titles and aspects,
as well as significantly improving the final submission rate.
These enhancements showcase a more simplified and efficient
listing experience.

VI. CONCLUSION

In this work, we introduced Optimized Preference-Based
Al for Listings (OPAL), a novel vision-language framework
designed for e-commerce listing optimization. OPAL generates
high-quality item information, including titles and structured
aspects, directly from product images. It addresses key chal-
lenges in multimodal learning, such as the modality gap and
lack of attribute-level context in LLM pretraining, through
our proposed pipeline: (1) MACE filters and aligns noisy
text with image-grounded data; (2) LACU injects contextual
knowledge via visually grounded Q&A generation; and (3)
DPO fine-tunes outputs toward better contextual understand-
ing. Experiments show OPAL outperforms strong baselines
across multiple backbones and metrics, generalizing well to
unseen or niche items. It effectively infers subtle product traits
and seller intent, demonstrating strong contextual reasoning
from multimodal data.

While alternative methods such as guided decoding using
a very large MLLM or agent-based retrieval systems offer
complementary value, they typically require extensive external
infrastructure and are resource-intensive. Furthermore, they
still fall short in bridging the underlying modality gap and
contextual reasoning limitations of pretrained models. By
contrast, OPAL offers a unified solution that embeds these
capabilities directly through end-to-end fine-tuning, and it can
still be incorporated into these advanced frameworks.

OPAL is developed as an API that enables high-quality,
schema-aligned product information from images, supporting
not only listing assistance but also multimodal tasks like
image interpretation, product content understanding, and au-
tomated labeling. It accelerates training data annotation and
has broader applications across e-commerce. Looking ahead,
we plan to add multi-image reasoning and expand OPAL
into an agentic framework that can query external knowledge,
interact with sellers, and adapt to category-specific constraints.
These advances will move OPAL toward becoming an end-
to-end multimodal assistant, highlighting the transformative
potential of fine-tuned vision-language models in automating
and scaling listing generation.
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