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Abstract—Multi-modal sequential recommendation, which in-
tegrates heterogeneous modality information to capture rich item
semantics and evolving user interests, has received widespread
attention in recent years. However, multi-modal content often
contains substantial task-irrelevant noise that can mislead rec-
ommendation decisions, and existing methods predominantly rely
on coarse-grained global features extracted from frozen pre-
trained encoders, making it challenging to distinguish informative
semantic signals from complex content. While recent efforts
attempt to address this through adaptive filtering mechanisms,
they generally lack fine-grained semantic identification and
selection capabilities. Although end-to-end optimization of multi-
modal encoders can help extract task-specific features, such
approaches often incur substantial computational and memory
overhead. To address these limitations, we propose TAME, a
novel framework for multi-modal sequential recommendation
that retrieves task-aware multi-modal signals and enriches ID
representations in a fine-grained, adaptive manner. Specifically,
to identify and extract task-aware multi-modal signals, we employ
an ID-aware query-based modality retriever that leverages a
set of task-conditioned learnable queries to retrieve informative
semantic cues from fine-grained multi-modal features via cross-
attention mechanism. To further enhance the expressiveness of
ID embeddings, we integrate the retrieved multi-modal signals
with ID embeddings through a gated Mixture-of-Experts (MoE)
architecture, enabling dynamic, context-aware representation
learning. Finally, sequence encoder for each modality is utilized
to model user behavior patterns over time. Extensive exper-
iments on three public benchmarks demonstrate that TAME
consistently outperforms state-of-the-art methods, highlighting its
effectiveness in task-relevant multi-modal information extraction
and ID representation enhancement. Our code is available at
https://anonymous.4open.science/r/TAME-0463/.

Index Terms—sequential recommendation, multi-modal recom-
mendation, mixture of experts.

I. INTRODUCTION

Sequential recommendation (SR), which aims to model
users’ evolving preferences based on their historical interac-
tion sequences, has achieved remarkable progress in recent
years [1], [2]. Numerous efforts have leveraged Recurrent Neu-
ral Networks (RNNs) [3], [4], Convolutional Neural Networks
(CNNs) [5], Graph Neural Networks (GNNs) [6]–[8] and
Transformer [9]–[11] to encode user interaction sequences and
capture dynamic user preferences. However, most existing SR
methods rely exclusively on ID-based representations derived
from user-item interaction histories. While effective under
sufficient interaction data, such methods tend to suffer from
limited semantic expressiveness and weak generalization in
sparse and cold-start scenarios [12]. To mitigate these limi-
tations, recent efforts [13]–[16] have explored incorporating
multi-modal data, such as text and images, into recommenda-

tion frameworks, providing richer semantic signals to improve
generalization under sparse interactions. As a result, multi-
modal sequential recommendation has garnered growing inter-
est, particularly in domains like e-commerce, video streaming,
and news recommendation, where diverse item-side content is
ubiquitous [17], [18].

In order to harness the potential of multi-modal information
in sequential recommendation, an increasing number of studies
have focused on designing effective fusion strategies that
integrate heterogeneous features extracted from frozen pre-
trained multi-modal encoders with ID embeddings. These ID
embeddings are typically treated as symbolic identifiers and
are learned purely from historical interaction sequences [9].
Early research [19] typically adopts static fusion techniques
such as concatenation, addition, and reconstruction to combine
multi-modal features with ID-based representations. Subse-
quent methods [14], [20], [21] focus on learning adaptive
fusion mechanisms that dynamically adjust the contribution
of each modality based on user preferences or context. Recent
works [12], [13], [16] further introduce the mixture of experts
(MoE) framework to reduce the semantic gap across modalities
for better multi-modal fusion. Despite these advances, existing
methods still face limitations in how multi-modal information
enhances and interacts with ID embeddings. On one hand,
ID embeddings often lack semantic grounding and contextual
awareness, leading to weak generalization under sparse or
cold-start scenarios [22]. Moreover, a single ID embedding
is typically difficult to reflect the diverse semantic facets of
items and align effectively with varying user intents [23]. On
the other hand, most existing models treat multi-modal features
as auxiliary signals for downstream sequence modeling, rather
than explicitly incorporating them into the ID representation
learning process [24]. This leads to under-utilization of se-
mantic content and limits the expressiveness of learned ID
embeddings.

Although multi-modal data supplies rich semantic informa-
tion that can improve recommendation performance, not all
modality content is equally beneficial to the recommendation
task [14], [16], [25], [26]. In practice, auxiliary modalities
such as item descriptions and images often contain content
unrelated to users’ decision-making, which can obscure se-
mantic cues crucial for recommendation. Furthermore, the
majority of existing methods [19], [20] rely on coarse-grained
global multi-modal features, which are typically obtained
from frozen pre-trained encoders via the special classifica-
tion token “[CLS]”. While computationally efficient, these
encoders are pre-trained on general-purpose objectives and are



not exposed to the recommendation task. Consequently, the
extracted global representations are inherently task-agnostic
and often fail to capture the fine-grained semantic cues
that are critical for user decision-making. This misalignment
makes it difficult to distinguish informative signals, causing
discriminative recommendation cues in multi-modal content
to be easily overshadowed by irrelevant or noisy informa-
tion. Although some research adopts adapters [14] and MoE-
based [12], [13], [16] architectures to alleviate noise in multi-
modal information, these methods predominantly operate on
coarse-grained representations and lack explicit mechanisms
to selectively extract task-relevant content. As a result, they
may retain irrelevant signals or fail to fully utilize valuable
modality information to capture the various intents of users.
While end-to-end multi-modal learning [15], [27] enables the
encoder to extract task-relevant features by jointly optimizing
the multi-modal encoders with recommendation objective,
such methods typically incur substantial computational and
memory overhead due to the need for fine-tuning large-scale
backbones. This highlights a key challenge in multi-modal
sequential recommendation: how to effectively and selectively
extract task-relevant signals from complex and noisy multi-
modal content in a fine-grained and adaptive manner to support
accurate and robust recommendation.

To tackle the aforementioned challenges, we propose a
Task-Aware Query-Based Multi-Modal REtrieval approach
for multi-modal sequential recommendation, named TAME.
In particular, to effectively extract task-relevant features from
complex multi-modal inputs, we propose an ID-aware modal-
ity retriever, which adopts a self-attention mechanism to
encode a set of learnable query vectors conditioned on item
ID embeddings. These queries are then utilized to retrieve
informative and task-relevant multi-modal cues via cross-
attention mechanism. To further enhance the expressiveness of
ID embeddings, we propose a modality-guided ID enrichment
module that leverages a gating mechanism to dynamically
regulate expert contributions in the MoE architecture based
on multi-modal context, enabling fine-grained and adaptive
enhancement of ID representations. Subsequently, a sequence
encoder is employed to model the historical interaction se-
quences of each modality, enabling the model to capture users’
evolving interests from different perspectives over time. In
summary, our contributions can be outlined as follows:

• We propose an ID-aware modality retriever that leverages
a set of task-conditioned learnable queries to selectively
extract informative and recommendation-relevant cues
from multi-modal inputs in a fine-grained and adaptive
manner.

• We introduce a Modality-Guided ID enrichment mod-
ule, which injects retrieved multi-modal semantics into
ID embeddings via a gated MoE architecture, enabling
dynamic and context-aware ID representation learning
guided by semantic priors.

• Extensive experiments conducted on public datasets
demonstrate the effectiveness of the TAME framework.

II. RELATED WORK

A. ID-Based Sequential Recommendation

Sequential recommendation focuses on learning temporal
dependencies from users’ historical interaction sequences,
which have been extensively studied in recent years. Con-
ventional methods typically rely on learnable ID embeddings
and sophisticated sequence encoders to capture dynamic user
intents. Early studies [28], [29] employ the Markov Chain
assumption to estimate item-to-item transition probabilities.
With the rise of deep learning, recent approaches have adopted
diverse neural network architectures to more effectively cap-
ture evolving user preferences [3], [9], [30]. For instance,
GRU4Rec [3], Caser [5], SURGE [6], and SASRec [9] utilize
RNN, CNN, GNN, and self-attention mechanism, respec-
tively, to characterize users’ historical interaction behaviors.
FEARec [11] models user historical interaction sequences
in the frequency domain, enabling the extraction of high-
frequency signals and periodic patterns that are difficult to
capture in the time domain. FamouSRec [31] further proposes
a frequency-aware MoE framework that dynamically selects
heterogeneous sequence encoders in a personalized manner.
In addition, methods such as S3-Rec [30] and CL4SRec [32]
incorporate auxiliary self-supervised signals to enhance ID
embedding learning. However, since they rely solely on ID-
based representations, these methods inherently suffer from
limited semantic expressiveness and poor generalization, par-
ticularly for long-tail and cold-start items.

B. Multi-Modal Sequential Recommendation

To address the limitations of ID-based sequential recom-
mendation methods, multi-modal sequential recommendation
has attracted increasing attention, aiming to incorporate rich
auxiliary content such as text and images to improve recom-
mendation performance. To leverage rich semantic information
of multi-modal data without increasing additional training cost,
some works adopt frozen pre-trained encoders to extract multi-
modal features and concentrate on effective fusion strate-
gies. MV-RNN [19] integrates visual and textual information
through various fusion methods, i.e., concatenation, addition,
and reconstruction, and explores separate and unified RNN
structures to capture user preferences. MMMLP [20] employs
several MLPs to fuse and align multi-modal information for se-
quential recommendation. MISSRec [14] employs a dynamic
fusion module that adaptively combines multi-modal item
features based on user interests. ODMT [21] introduces an
ID-aware multi-modal Transformer to integrate heterogeneous
features through inter-modal attention mechanisms. Recent
advances further explore MoE frameworks for flexible and
personalized multi-modal fusion. UniSRec [13] designs a
lightweight MoE-enhanced adapter to facilitate knowledge
transfer from pre-trained textual representations to ID-based
item embeddings. M3SRec [12] employs modality-specific
and cross-modal MoE modules to capture complementary
signals from different modalities. HM4SR [16] proposes a
hierarchical Mixture-of-Experts (MoE) architecture to extract



⋯⋯

Text
Image

ID-Aware Modality 

Retriever

Gating

ID Embedding 

Table

Gating

Gating

Gating

Transformer

Logits

⋯⋯𝑖𝑢,1 𝑖𝑢,𝑙 𝑖𝑢,|𝑆|

Transformer

Logits

Transformer

Logits

+

Scores

ID-Aware 

Modality 

Retriever 

Modality-Guided

ID Enrichment

Little People Nativity Advent 

Calendar. Toys & Games Action 

Figures & Statues Playsets & 

Vehicles Playsets. Fisher-Price. 

⋯⋯

⋯
Expert 

𝑵q
𝒕 + 𝑵q

𝒗
Expert 

𝑵q
𝒕 + 1

Expert 

𝑵q
𝒕Expert 1 ⋯

Gating

⋯

⨀ ⨀ ⨀ ⨀

⨂

Gating

⋯

Modality-Guided 

ID Enrichment

ID-Aware Modality 

Retriever

Textual Encoder Visual Encoder

Temporal User Modeling 

and Preference Prediction

Task-Aware 

Multi-Modal 

Retrieval

⋯ ⋯

⋯

Modality

Encoder
Self-Attention

Cross-Attention

Feed-Forward

⋯ ⋯

⋯

⋯ ⋯

Fig. 1: The framework of the TAME model, which consists of three modules: task-aware multi-modal retrieval module,
modality-guided ID enrichment module and temporal user modeling and preference prediction module.

interest-relevant multi-modal features and to model dynamic
and explicit temporal information.

Other efforts investigate end-to-end multi-modal learning
that jointly optimizes feature extraction and sequential rec-
ommendation to eliminate dependence on pre-trained feature
extractors. Previous studies [27], [33] have demonstrated that
purely modality-based recommendation models can achieve
comparable performance to ID-based models through end-to-
end training. IISAN [15] designs a novel decoupled parameter-
efficient fine-tuning architecture to train multi-modal back-
bones at both intra-modal and inter-modal levels, achiev-
ing promising results. Despite these advances, most existing
methods still struggle to effectively and efficiently distill
recommendation-relevant signals from multi-modal informa-
tion.

III. PROBLEM DEFINITION

Let U = {u1, u2, . . . , u|U|} and I = {i1, i2, . . . , i|I|}
denote the sets of users and items, respectively, with |U| and
|I| being the total numbers of users and items. Each item i ∈ I
is associated with several modalities M = {t, v}, where t and
v correspond to textual and visual modalities, respectively. For

each user u ∈ U , the historical interaction sequence is denoted
by Su = {iu,1, iu,2, . . . , iu,|Su|}, where |Su| is the sequence
length.

Given the interaction sequence Su of user u, the objective
of the multi-modal sequential recommendation is to predict
the next item i ∈ I that the user is most likely to interact
with, by leveraging both sequential behavioral patterns and
multi-modal content of items.

IV. METHODOLOGY

The overall framework of TAME, as illustrated in Fig. 1, is
composed of three key modules: (1) Task-Aware Multi-Modal
Retrieval module , which selectively extract recommendation-
relevant signals from fine-grained features derived from pre-
trained multi-modal encoders using an ID-aware modality
retriever, and fuses them through a gating mechanism; (2)
Modality-Guided ID Enrichment module, which enhances
ID representations through an MoE architecture guided by
retrieved fine-grained multi-modal representations; (3) Tempo-
ral User Modeling and Preference Prediction module, which
captures users’ evolving interests through sequential models
to enable personalized next-item prediction.



A. Task-Aware Multi-Modal Retrieval

Since only a fraction of an item’s multi-modal content is
highly relevant to the recommendation task, existing methods
that rely on pre-trained multi-modal encoders often utilize
coarse-grained global representations that lack task awareness.
As a result, they fail to accurately capture the specific content
that appeals to users, and the crucial recommendation signals
embedded in multi-modal information are easily overwhelmed
by irrelevant noise.

To overcome this, the module selectively extracts fine-
grained, task-relevant features from multi-modal inputs. Using
the embedding of the item ID as a task-aware signal, the model
can effectively and efficiently retrieve modality-specific fea-
tures that are closely aligned with user intent, thus enhancing
the performance of the downstream recommendation task.

1) Item Embedding Initialization: For an item i, we uti-
lize its textual and visual modalities, along with its ID
embedding, to characterize the semantics of the item from
multiple perspectives. As for ID representations, we initialize
an embedding table with random weights, which is updated
during the training stage to capture latent item interaction
relationships. For textual and visual modalities, we employ
pre-trained textual and visual feature encoders, i.e., BERT [34]
and ViT [35], to extract the corresponding fine-grained token-
level and patch-level embeddings. The initialization process
can be formulated as follows:

eidi = EmbeddingTable(i),Et
i = BERT(t),Ev

i = ViT(v) (1)

where eidi ∈ R1×d, Et
i = [et,clsi ; et,1i ; . . . ; et,N

t

i ] ∈
R(Nt+1)×dt

and Ev
i = [ev,1i ; . . . ; ev,N

v

i ; ev,clsi ] ∈ R(Nv+1)×dv

denote the ID embedding, the fine-grained token-level and
patch-level embeddings. Here, d, dt and dv are the embedding
dimensions of ID, textual, and visual modalities, respectively,
while nt and nv represent the numbers of text tokens and
image patches. eM,cls

i denotes the embedding of the special
classification token “[CLS]” used by the pre-trained encoders.

2) ID-Aware Modality Retriever : In multi-modal recom-
mendation, a key challenge lies in identifying which parts
of an item’s textual and visual content are truly relevant to
the recommendation task and influential to user preferences,
since redundant information in multi-modal content can easily
overshadow truly indicative signals [14], [16], [25]. Different
from existing approaches that rely passively on coarse-grained
global representations from pre-trained encoders, this module
actively integrates item ID information into the query vectors
to attend to fine-grained textual and visual features, enabling
the model to selectively extract task-relevant signals while
filtering out redundant information.

Inspired by BLIP-2 [36] and VLoRA [37], we design an ID-
aware query-based modality retriever with cross-attention layer
to selectively extract task-relevant multi-modal features. For
the textual modality, we construct a learnable query embedding
matrix Qt = [qt,1; . . . ;qt,Nt

q ] ∈ RNt
q×d, where qt,j ∈ R1×d

denotes the embedding vector of j-th query and N t
q is the

number of textual queries. Each query is designed to focus on

different semantic facets of the textual content, enabling the
model to extract diverse and fine-grained information that is
potentially relevant to user preferences. The query matrix is
then concatenated with the item’s ID embedding eidi to inject
task-specific signals, denoted as Hi = [Qt; eid

i ] ∈ R(Nt
q+1)×d.

To further enable the queries to interact with each other and
adaptively exchange information conditioned on the item ID,
we apply a self-attention layer over the concatenated query
matrix as follows:

H̃i = MHSA(Hi) = Concat(heads
1, heads2, . . . , headsht)Ws,O

(2)
headsm = Self-Attention(HiW

s,Q
m , HiW

s,K
m , HiW

s,V
m )

(3)
where MHSA(·) denotes the multi-head self-attention layer,
Concat(·) denotes the concatenation operation and headsm is
the output of the m-th attention head. The projection matrices
Ws,Q

m ,Ws,K
m ,Ws,V

m ∈ Rd×dh map the input features into
head-specific query, key, and value spaces, where dh = d/ht

is the hidden size of each head with ht being the number
of attention heads of textual modality. H̃i denotes the output
of the self-attention mechanism, which can be split into an
ID-aware query matrix and an updated ID embedding:

Q̃t = H̃i[1 : N t
q ], ẽid

i = H̃i[N
t
q + 1] (4)

In practice, only the ID-aware query matrix Q̃t is used to
retrieve recommendation-relevant information from the textual
modalities, while ẽid

i is discarded, as the ID embedding serves
solely as a guidance signal to generate task-aware queries.

To extract modality-specific semantics aligned with recom-
mendation intent, the ID-aware query matrix Qt

i ∈ RNt
q×d

is used to perform cross-attention over textual features Et
i ∈

R(Nt+1)×dt

, extracted by the pre-trained textual encoder. The
process can be formulated as:

Ẽt
i = MHCA(Q̃t,Et

i) = Concat(headc
1; . . . ; headcht)Wc,O

(5)
headc

n = Cross-Attention(Q̃tWc,Q
n , Et

iW
c,K
n , Et

iW
c,V
n )

(6)
where MHCA(·) denotes the multi-head cross-attention layer,
and headt

n is the output of the n-th cross-attention head.
The projection matrices are defined as Wc,Q

n ∈ Rd×dh , and
Wc,K

n ,Wc,V
n ∈ Rdt×dt

h with dth = dt/ht. The output matrix
Ẽt

i ∈ RNt
q×d encodes a set of fine-grained, ID-aware textual

semantic representations for item i retrieved from the textual
features extracted by the frozen pre-trained encoder. Each
fine-grained textual semantic embedding vector ẽti,j ∈ Ẽt

i

attends to a different part of the content, capturing diverse
semantic facets conditioned on the item ID. Finally, a feed-
forward network (FFN) with residual connection and layer
normalization is applied to the intermediate representation to
obtain the final textual embedding matrix Êt

i.
Similarly, we obtain the fine-grained visual embedding

matrix Êv
i ∈ RNv

q ×d by applying a multi-head cross-attention



mechanism followed by a feed-forward network (FFN), using
the ID-aware query matrix Qv

i and the visual embeddings Ev
i ,

where Nv
q denotes the number of visual queries.

The fine-grained textual and visual semantic matrices cap-
ture token- and patch-level content that is semantically aligned
with the item’s ID and the recommendation objective. By
employing ID-aware modality retriever, the model is able to
extract fine-grained and task-aware semantic signals from both
modalities, ensuring that the retrieved features highlight the
most informative facets of item content. These representations
serve as modality-specific priors and will be further integrated
to enhance ID embedding in the subsequent module.

3) Intra-modal Semantic Aggregation: After retrieving a
set of fine-grained embedding vectors from each modality, we
independently aggregate them to generate compact, modality-
specific embeddings that support the recommendation task.
Since different parts of an item’s content may contribute
unequally to user preferences, we adopt a gating mechanism
to adaptively weight the semantic vectors based on their
estimated importance, instead of treating them equally.

For the textual modality, given a set of retrieved fine-grained
semantic vectors Êt

i = [êt,1i ; . . . ; ê
t,Nt

q

i ], we aggregate them
via an adaptive weighted sum based on the gating mechanism:

êti =

Nt
q∑

j=1

gt,ji · êt,ji (7)

where êti ∈ R1×d denotes the aggregated textual embedding,
and gt,ji represents the gating weight of the j-th textual vector
for item i from the gating vector gt

i . It is computed through
a lightweight FFN to emphasize preference-relevant textual
vectors, which can be computed by the following formulation:

gt
i = Concat(êt,1i , . . . , ê

t,Nt
q

i )Wt
g + bt

g (8)

where Wt
g ∈ RNt

q ·d×Nt
q , bt

g ∈ R1×Nt
q are the learnable weight

and bias of the gating mechanism. The same process is applied
to the retrieved fine-grained visual embedding vectors, yielding
the aggregated visual embedding êvi ∈ R1×d.

This gating-based aggregation enables the model to selec-
tively preserve semantically informative features while sup-
pressing noisy or redundant information for recommendation
task, resulting in modality-specific representations that are
compact yet expressive.

B. Modality-Guided ID Enrichment

In mainstream sequential recommendation settings [3], [6],
[9], [38], each item is assigned a single embedding vector
that is learned solely from interaction signals. However, such
ID embeddings are often limited in expressiveness and fail
to capture the multifaceted semantic content of items [23],
[39], [40]. To address this, we propose to enhance the ID
embedding by integrating multi-modal features through an
MoE architecture.

Given an historical interaction sequence Su of user u, we
first obtain the corresponding ID embedding sequence and then

add position embedding to preserve temporal order, which can
be formulated as follows:

xid
u,l = eidu,l + pl (9)

where pl ∈ R1×d denotes the position embedding correspond-
ing to the l-th position in the sequence.

Then, we apply an MoE module to the ID embedding
of each item in the sequence, where the gating is guided
by the retrieved fine-grained multi-modal features. This de-
sign enables fine-grained multi-modal signals to dynamically
modulate expert aggregation, thereby producing enriched ID
embeddings that are more expressive to better align with
complex user intent. For ID embedding xid

u,l in sequence, we
transform it through Nq expert networks to produce a more
expressive and adaptive representation, with Nq = N t

q +Nv
q :

x̂id
u,l =

Nq∑
k=1

gid,ku,l · (wid,k ⊙ xid
u,l) (10)

where x̂id
u,l ∈ R1×d is the output enhanced ID embedding,

wid,k ∈ R1×d represents the learnable weight of the k-th
expert, ⊙ denotes element-wise multiplication operation, and
gid,ku,l denotes the gating weight assigned to the k-th expert for
item iu,l.

Rather than relying on self-gating based solely on ID
embeddings, we leverage the item’s fine-grained multi-modal
signals to guide expert aggregation, as these modality-specific
representations reflect semantically salient content that in-
fluences user preferences and thus offer effective cues for
context-aware transformation. Specifically, we concatenate the
retrieved fine-grained textual and visual embedding vectors
and apply an FFN to generate the gating vector for experts
weighting:

zu,l = Concat(êt,1u,l, . . . , ê
t,Nt

q

u,l , êv,1u,l , . . . , ê
v,Nv

q

u,l ) (11)

gid
u,l = Softmax(zu,lWid

g + bid
g ) (12)

where zu,l ∈ R1×Nq·d denotes the concatenated multi-modal
embedding vector for the l-th item in the sequence, Wid

g ∈
RNq·d×Nq and bid

g ∈ R1×Nq are the learnable weight and bias
of the gating mechanism, and gid

u,l ∈ RNq denotes the gating
weights over the Nq ID experts.

By leveraging the retrieved fine-grained multi-modal signals
as gating cues, each expert network can focus on different se-
mantic facets of items, enabling the model to capture nuanced
item characteristics that are crucial for accurate user prefer-
ence modeling. This module enables ID representations to be
adaptively enhanced based on the corresponding multi-modal
semantic context, resulting in more expressive embeddings that
are better aligned with diverse user intent.

C. Temporal User Modeling and Preference Prediction

After obtaining the enhanced ID, textual, and visual embed-
dings for each item, we employ modality-specific Transformer
models to capture the user’s evolving preferences over time.
Formally, for a user u with an interaction sequence Su,



we construct the corresponding modality-specific embedding
sequences. Similar to the ID embeddings, we incorporate
position embeddings into the textual and visual embeddings
to preserve temporal order. In particular, for position l in the
sequence, the resulting textual and visual embeddings are de-
noted as x̂t

u,l and x̂v
u,l. The corresponding sequence of modal-

ity mm can be denoted as Smm
u = [x̂mm

1 ; x̂mm
2 ; . . . ; x̂mm

|Su|]
with mm ∈ {id, t, v}. Each sequence Smm

u is then inde-
pendently encoded by a Transformer to capture temporal
dependencies and modality-specific dynamic user interests as
follows:

rmm
u = Transformer(Smm

u ) (13)

where rmm
u ∈ R1×d denotes the modality-specific preference

representation of user u, obtained from the final hidden state
at the last position in the sequence under modality mm. The
interaction probability between user u and item i is calculated
as follows:

ŷui = ridu · eidi + rtu · êti + rvu · êvi (14)

where ŷui the prediction score between user u and item i.

D. Optimization

To effectively train the proposed TAME model, we adopt a
joint optimization strategy that combines a prediction loss and
a contrastive alignment loss to enhance both recommendation
accuracy and representation quality.

The primary objective of multi-modal sequential recom-
mendation is to accurately predict the next item in a user’s
sequence. Given the prediction score ŷui and the ground-truth
yui, the cross-entropy loss function is adopted as the main
objective to optimize the model parameters:

LCE = −
∑
i∈I

yui log(ŷui) (15)

Since the fine-grained multi-modal semantic vectors are
extracted under the guidance of item ID embeddings, it is
crucial to ensure that these ID representations remain well
aligned with users’ true preferences. In other words, the quality
and consistency of ID embeddings directly affect the reliability
and effectiveness of the ID-aware modality retriever and the
overall recommendation performance.

To this end, we introduce a contrastive learning objective
in the ID embedding space. This auxiliary task encourages
the sequential representation of a user to be close to the
ID embedding of their next interacted item, while being
distinguishable from other items in the same batch.

Formally, for one batch B containing |B| sequences, given
the sequence embedding of id modality ridu and the ID
embedding of the ground-truth item eidi , the contrastive loss
is defined as:

LCL = − log
exp(sim(ridu , eidi )/τ)∑|B|
j=1 exp(sim(ridu , eidj )/τ)

(16)

where sim(·, ·) denotes cosine similarity, and τ is a tempera-
ture hyper-parameter.

TABLE I: Statistics of the processed datasets.

Datasets Toys Sports Beauty

# Users 19,412 35,598 22,363
# Items 11,924 18,357 12,101
# Actions 167,597 296,337 198,502
Avg. Actions/User 8.63 8.32 8.88
Avg. Actions/Item 14.06 16.14 16.40
Sparsity 99.93% 99.95% 99.93%

We combine the prediction loss and the contrastive align-
ment loss into a unified training objective:

L = LCE + LCL (17)

By jointly optimizing both objectives, the model is encour-
aged not only to make accurate predictions but also to learn
reliable ID embeddings that align well with user preferences.

V. EXPERIMENT

The experiments are conducted to answer the following
research questions:

• RQ1: How does TAME perform compared to state-of-
the-art baselines?

• RQ2: How do key modules affect the performance of
TAME?

• RQ3: How do different hyper-parameter settings impact
the performance of TAME?

A. Experimental Settings

1) Datasets: To evaluate the performance of TAME and
other SR models, we conduct experiments on three pub-
lic datasets chosen from Amazon Review Datasets1, which
includes “Toys and Games” (Toys), “Sports and Outdoors”
(Sports) and “Beauty”. Following previous work [9], [13],
[16], [41], we filter out users and items with fewer than five
interactions to construct the 5-core subset for each dataset. For
textual modality, the phrases of title, category and brand fields
of each item are concatenated following prior studies [13],
[14], [16], while for visual modality, the first image of each
item is downloaded according to the URL in the metadata. The
concrete statistics of the processed datasets are summarized in
Table I

2) Baselines: To verify the effectiveness of TAME, we
compare it with the following two categories of representative
and state-of-the-art baselines: 1) ID-based sequential recom-
mendation models, which solely model user-item interaction
sequences based on item IDs, including GRU4Rec, SASRec,
NextItNet and FEARec; 2) modality-based sequential recom-
mendation models, which incorporate multi-modal features to
enhance item representations, including UniSRec, VQ-Rec,
TedRec, MMMLP, MISSRec, ODMT, IISAN and HM4SR.
The details of the baselines are further described as follows:

• GRU4Rec [3] applies GRU to model user interaction
sequence for session-based recommendation.

1https://jmcauley.ucsd.edu/data/amazon/

https://jmcauley.ucsd.edu/data/amazon/


TABLE II: Performance comparison with different methods. The best results are highlighted in bold, and the second-best
results are underlined.

Dataset Metrics ID-Based Sequential Models Modality-Based Sequential Models Improv.
GRU4Rec SASRec NextItNet FEARec UniSRec VQ-Rec TedRec MMMLP MISSRec ODMT IISAN HM4SR TAME

Toys

Recall@5 0.0396 0.0620 0.0153 0.0536 0.0439 0.0419 0.0472 0.0607 0.0544 0.0581 0.0540 0.0678 0.0723 6.64%
Recall@10 0.0558 0.0883 0.0269 0.0774 0.0693 0.0655 0.0712 0.0778 0.0842 0.0873 0.0795 0.0919 0.1005 9.36%
Recall@20 0.0799 0.1210 0.0465 0.1065 0.1048 0.0920 0.1058 0.0989 0.1226 0.1222 0.1159 0.1214 0.1400 14.19%
NDCG@5 0.0276 0.0352 0.0098 0.0306 0.0266 0.0218 0.0304 0.0460 0.0316 0.0388 0.0372 0.0492 0.0505 2.64%

NDCG@10 0.0328 0.0437 0.0134 0.0383 0.0348 0.0294 0.0381 0.0515 0.0407 0.0481 0.0454 0.0571 0.0596 4.38%
NDCG@20 0.0389 0.0520 0.0183 0.0457 0.0437 0.0361 0.0468 0.0568 0.0502 0.0570 0.0546 0.0645 0.0696 7.91%

Sports

Recall@5 0.0211 0.0316 0.0143 0.0280 0.0230 0.0280 0.0271 0.0298 0.0283 0.0305 0.0320 0.0326 0.0354 8.59%
Recall@10 0.0350 0.0484 0.0232 0.0426 0.0385 0.0461 0.0429 0.0425 0.0445 0.0478 0.0487 0.0471 0.0533 9.45%
Recall@20 0.0539 0.0715 0.0387 0.0634 0.0604 0.0667 0.0656 0.0600 0.0682 0.0699 0.0724 0.0672 0.0766 5.80%
NDCG@5 0.0139 0.0173 0.0091 0.0150 0.0144 0.0158 0.0177 0.0212 0.0169 0.0203 0.0212 0.0228 0.0240 5.26%

NDCG@10 0.0184 0.0227 0.0120 0.0197 0.0194 0.0216 0.0227 0.0253 0.0219 0.0258 0.0266 0.0274 0.0297 8.39%
NDCG@20 0.0231 0.0285 0.0159 0.0249 0.0249 0.0268 0.0285 0.0297 0.0277 0.0313 0.0326 0.0325 0.0356 9.20%

Beauty

Recall@5 0.0418 0.0564 0.0283 0.0508 0.0349 0.0428 0.0483 0.0547 0.0510 0.0522 0.0580 0.0569 0.0601 3.62%
Recall@10 0.0635 0.0842 0.0478 0.0765 0.0594 0.0675 0.0741 0.0765 0.0783 0.0805 0.0834 0.0785 0.0853 1.31%
Recall@20 0.0915 0.1177 0.0741 0.1097 0.0941 0.0957 0.1092 0.1021 0.1177 0.1168 0.1215 0.1069 0.1227 0.99%
NDCG@5 0.0280 0.0329 0.0174 0.0287 0.0218 0.0239 0.0324 0.0399 0.0299 0.0348 0.0380 0.0420 0.0421 0.24%

NDCG@10 0.0349 0.0419 0.0236 0.0370 0.0297 0.0319 0.0408 0.0469 0.0382 0.0439 0.0462 0.0489 0.0502 2.66%
NDCG@20 0.0420 0.0504 0.0302 0.0453 0.0384 0.0390 0.0497 0.0534 0.0479 0.0530 0.0558 0.0560 0.0596 6.43%

• SASRec [9] adopts self-attention mechanism to capture
users’ dynamic interests by adaptively attending to rele-
vant items in their historical interaction sequences.

• NextItNet [42] employs dilated convolutional neural net-
works to model both short- and long-range item depen-
dencies in user interaction sequences.

• FEARec [11] enhances self-attention with frequency-
domain modeling to better capture sequential patterns.

• UniSRec [13] adopts a parametric whitening strategy
and an MoE framework to learn universal textual repre-
sentations, facilitating seamless transfer across different
domains. For fair comparison, we train the model directly
on the target dataset without the original cross-domain
pre-training stage.

• VQ-Rec [43] learns transferable item representations by
mapping item text to vector-quantized discrete codes. For
fair comparison, we omit the pre-training stage and train
it directly on the target dataset.

• TedRec [44] fuses text and ID features at the sequence
level by applying Fast Fourier Transform in the frequency
domain.

• MMMLP [20] is a purely MLP-based architecture that
efficiently integrates multi-modal information.

• MISSRec [14] adopts a transformer-based encoder-
decoder architecture, where the contextual encoder cap-
tures multi-modal sequential synergy and the interest-
aware decoder models item-modality-interest interac-
tions.

• ODMT [21] utilizes a Transformer to model multi-modal
feature interactions and employs online distillation to
enable mutual learning across multi-source data.

• IISAN [15] proposes a novel plug-and-play architecture
with a decoupled fine-tuning strategy for the multi-modal
encoder to better align with the recommendation task.

• HM4SR [16] introduces a hierarchical mixture-of-experts
framework that integrates multi-modal features and ex-
plicit temporal signals to model dynamic user interests.

3) Evaluating Metrics: We evaluate the performance of all
models using Recall@K and Normalized Discounted Cumu-
lative Gain (NDCG@K), where K ∈ {5, 10, 20}. Following
common practice in sequential recommendation, we adopt the
leave-one-out evaluation protocol, where the last item in each
user sequence is held out for testing, the second-to-last item
for validation, and the remaining items are used for training.
During evaluation, each test item is ranked against all items
without candidate sampling to ensure a rigorous assessment
of model performance.

4) Implementation Details: To ensure a fair comparison, we
reproduce all baseline models within a unified pipeline. For the
textual modality, features are extracted using the pre-trained
”bert-base-uncased” model, while for the visual modality,
features are extracted using the pre-trained ”openai/clip-vit-
base-patch32” model. For all methods, we set the embedding
dimension d to 64. For other hyper-parameters in the baseline
methods, we follow the settings reported in their original
papers to ensure consistency and fairness. In our model,
the numbers of textual query N t

q and visual query Nv
q are

selected from {1, 2, 4, 8, 16} and the numbers of attention
heads of textual retriever and visual retriever are chosen from
{1, 2, 4, 8, 16}. We set the number of Transformer layers to
2 and the number of attention heads of Transformer to 2 by
default. The model is optimized using the Adam optimizer



with a learning rate of 1e-3. To prevent overfitting, we adopt
an early stopping strategy with a patience of 10 epochs.

B. Performance Comparison (RQ1)

We compare the proposed TAME approach against a broad
range of baseline methods across all datasets and evaluation
metrics. The results are presented in Table II, from which we
draw the following observations:

Since ID-based sequential recommendation methods rely
solely on discrete item IDs to model user interaction se-
quences, they inherently lack semantic grounding and struggle
to generalize to unseen or infrequent items, particularly in
cold-start and sparse interaction scenarios. These methods
show relatively weak performance on the majority of datasets
due to the absence of auxiliary modality features. Although
self-attention-based methods such as SASRec and FEARec
outperform RNN- and CNN-based models by capturing long-
range dependencies, their effectiveness remains closely tied to
the density of user-item interaction data.

Modality-based sequential recommendation baseline mod-
els, in most cases, achieve more competitive performance than
ID-based sequential recommendation, since they incorporate
auxiliary modality features such as item text and images to
enrich item representations, enabling the model to capture
richer semantic information beyond single ID representations.

For uni-modal sequential recommendation methods, i.e.,
UniSRec, VQ-Rec and TedRec, their performance is gen-
erally inferior to those multi-modal models, as they only
leverage textual descriptions while ignoring other important
modalities such as images. Furthermore, their performance
sometimes falls behind strong ID-based models like SASRec
and FEARec, mainly due to noise and redundancy in the text
modality.

Multi-modal sequential recommendation methods that in-
corporate multi-modal features, tend to outperform ID-only
and uni-modal baselines. By enriching item representations
with complementary semantic cues, these models better cap-
ture user preferences and item characteristics, leading to
improved recommendation performance. MMMLP and MIS-
SRec employs MLP and Transformer architectures to jointly
model multi-modal features, showing better performance than
uni-modal and ID-based sequential recommendation models.
Although ODMT employs fine-grained multi-modal feature
fusion, it integrates all semantic information from multiple
modalities without filtering, leading to the inclusion of re-
dundant and noisy features. This indiscriminate fusion can
interfere with the recommendation performance, resulting in
only suboptimal performance. Despite these advances, they of-
ten rely on coarse-grained global multi-modal features derived
from frozen pre-trained encoders, which can introduce task-
irrelevant noise and degrade recommendation performance.
IISAN adopts a decoupled parameter-efficient tuning strategy
to fine-tune multi-modal encoders to extract task-relevant
multi-modal features, while HM4SR explicitly models tem-
poral dynamics via a hierarchical MoE framework, enabling

TABLE III: Ablation analysis results on three downstream
datasets. ”R@20” is short for Recall@20, and ”N@20” is short
for NDCG@20.

Models Toys Sports Beauty

R@20 N@20 R@20 N@20 R@20 N@20

w/o modality retriever 0.1269 0.0646 0.0697 0.0328 0.1134 0.0573
w/o ID enrichment 0.1355 0.0564 0.0760 0.0303 0.1232 0.0545

w/o text 0.1219 0.0638 0.0647 0.0312 0.1118 0.0547
w/o vision 0.1319 0.0656 0.0712 0.0340 0.1170 0.0576

TAME 0.1400 0.0696 0.0766 0.0356 0.1227 0.0596

better user interest modeling. Consequently, these two methods
achieve optimal performance across most datasets and metrics.

It is evident that, compared to all baseline methods, the
proposed TAME method consistently achieves the best perfor-
mance across all datasets and evaluation metrics. This demon-
strates the model’s superior capability in extracting task-
relevant information of recommendation from multi-modal
features and effectively modeling users’ historical interaction
behaviors, thereby improving the understanding of both item
semantics and user interests, and ultimately enhancing recom-
mendation accuracy.

C. Ablation Study (RQ2)

To verify the effectiveness of each component of the pro-
posed TAME model, we conduct comprehensive ablation stud-
ies on three downstream datasets. In particular, we implement
four ablated variants as follows: 1) w/o modality retriever,
which replaces the ID-aware modality retriever with an MLP;
2) w/o ID enrichment, which removes the modality-guided ID
enrichment module; 3) w/o text, which removes the textual
modality; 4) w/o vision, which removes the visual modality.
The evaluation results are illustrated in Table III.

It can be observed that the performance of all variants drops
to varying degrees after the removal of their corresponding
components, which demonstrates the necessity and effective-
ness of each module in the proposed TAME model.

Particularly, the variant w/o modality retriever results in a
pronounced decline in overall recommendation performance,
especially in Recall@20, as it significantly strengthens the
model’s ability to selectively extract task-relevant signals from
massive multi-modal feature. In contrast, the variant w/o
ID enrichment causes a substantial decline in NDCG@20,
highlighting its role in improving ranking precision by refining
ID representations under modality guidance. These results
indicate that the two components play complementary roles:
ID-aware modality retriever improves retrieval recall, while
modality-guided ID enrichment module boosts ranking quality.
It can be observed that both the variant w/o text and the
variant w/o vision result in notable performance degradation,
highlighting the importance of both modalities in the recom-
mendation process. Notably, the variant w/o text exhibits a
more pronounced decline than the variant w/o vision, indicat-
ing that textual information tends to convey richer and more
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Fig. 2: Performance with different numbers of textual queries.
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Fig. 3: Performance with different numbers of visual queries.
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Fig. 4: Performance with different numbers of attention heads
of textual retriever.
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Fig. 5: Performance with different numbers of attention heads
of visual retriever.

informative semantic cues, thereby playing a more pivotal role
in capturing user preferences and decision-making.

D. Hyper-Parameter Study (RQ3)

We further analyze the impact of key hyper-parameters,
including the numbers of textual queries N t

q , visual queries
Nv

q , attention heads of textual retriever ht, and attention
heads of visual retriever hv . Each parameter is varied in
{1, 2, 4, 8, 16} while keeping other hyper-parameters fixed to

ensure a controlled evaluation. The results are illustrated in
Fig. 2, Fig. 3, Fig. 4 and Fig. 5.

It is observed in Fig. 2 that model performance is optimal
when the number of textual queries N t

q is set to 1 and 2.
However, further increasing the number of textual queries
N t

q leads to a performance drop, possibly because the model
struggles to focus on relevant task-specific signals when faced
with too many queries. As illustrated in Fig. 3, the model
exhibits stable performance as the number of visual queries
Nv

q increases, with a slight improvement observed up to 4
queries. This suggests that visual modality is more dispersed
than textual modality, and multiple queries help capture diverse
task-relevant visual signals without introducing substantial
noise.

As shown in Fig. 4, performance improves as the number
of attention heads of textual retriever ht increases from 2
to 8, suggesting enhanced ability to capture diverse semantic
cues. However, further increasing ht yields marginal gains or
slight drops, likely due to attention dispersion. As illustrated in
Fig. 5, increasing the number of attention heads of visual re-
triever hv generally improves model performance, with notable
gains observed when increasing from 1 to 8. This suggests
that a larger number of attention heads allows the visual
retriever to attend to more diverse visual patterns, enhancing
its ability to capture fine-grained semantic signals. However,
when hv exceeds 8, model performance plateaus, suggesting
that an excessive number of attention heads yields diminishing
returns and may introduce representational redundancy. These
results highlight the importance of choosing an appropriate
number of attention heads to balance representation diversity
and recommendation performance.

VI. CONCLUSION

In this paper, we propose TAME, a novel framework
for multi-modal sequential recommendation that addresses
the challenges of task-irrelevant noise in coarse-fined global
multi-modal features and the limited expressiveness of ID
embeddings. By proposing an ID-aware query-based modality
retriever, we can selectively extract informative semantic cues
from fine-grained multi-modal features obtained from frozen
pre-trained encoders. Moreover, we enhance the expressive-
ness and adaptability of ID representations by integrating
retrieved multi-modal signals into the ID embedding learning
process via an MoE architecture, enabling context-aware and
fine-grained representation refinement. Extensive experiments
conducted on three public datasets demonstrate the superiority
of the proposed TAME model. Ablation studies further reveal
that the ID-aware modality retriever plays a pivotal role in this
success by effectively identifying and extracting the most rel-
evant fine-grained semantic information from massive multi-
modal features, successfully avoiding the redundancy and
noise interference inherent in traditional multi-modal fusion
approaches, significantly enhancing recommendation accuracy
and robustness.
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