
ID-Guided Multimodal Experts with Contrastive
Diffusion for Sequential Recommendation

Anonymous

Abstract—Multimodal sequential recommendation has
emerged as a promising direction to enrich user-item interaction
representations by incorporating diverse modalities such as
text and images. However, existing methods often overlook the
inherent inconsistencies between different modalities and fail
to effectively filter redundant noise within modality-specific
features, leading to suboptimal recommendation performance.
To address these issues, we propose a novel framework named
ID-Guided Multimodal Experts with Contrastive Diffusion for
Sequential Recommendation (IMECD). Specifically, IMECD
introduces a novel ID-guided multimodal mixture of experts
module, which uniquely leverages long-term user preferences
encoded in ID embeddings to dynamically guide the extraction
of text and image features. This module helps resolve cross-
modal semantic inconsistency and suppresses irrelevant signals,
thereby improving the quality of multimodal representations.
To further mitigate noise in user interaction sequences, we
introduce a modality-specific vector quantization module
that denoises sequential features by independently quantizing
each modality. Moreover, we propose a contrastive diffusion
generation module, which conditions the diffusion process
on sequence representations and employs a contrastive loss
to alleviate generation bias. Extensive experiments on four
benchmark datasets demonstrate that IMECD consistently
outperforms state-of-the-art baselines. Our code is available at
https://anonymous.4open.science/r/IMECD-LYH.

Index Terms—mixture of experts, diffusion model, sequential
recommendation, multimodal.

I. INTRODUCTION

Nowadays, recommender system plays an important role of
discovering preferred items from vast inventory and presenting
them to potential users [1], [2]. Sequential recommendation
(SR) aims to predict the next item a user will interact with
based on their historical behavior sequence. Traditional se-
quential approaches [3]–[5] predominantly rely on ID to model
interaction sequences. While ID-based methods benefit from
simplicity and scalability, they often suffer from limitations in
cold-start scenarios [6] and ignore the abundant multimodal
semantic item descriptions [7].

To overcome the limitations of ID-only models, multimodal
sequential recommendation has emerged as a promising direc-
tion. A number of studies [8]–[10] have integrated text and
image modalities into sequence modeling to learn effective
sequential representations. Recently, several studies [11], [12]
have attempted to explore adaptive fusion mechanisms to
achieve more flexible multimodal modeling. By leveraging
multimodal semantic signals, existing methods have shown
notable improvements in recommendation performance, en-
abling fine-grained item understanding and more accurate user
interest modeling.
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Fig. 1. Challenges of Multimodal Features in Sequential Recommendation.

Despite the progress in multimodal sequential recommenda-
tion, existing methods often assume that different modalities
like product descriptions and images provide complementary
and semantically aligned information suitable for direct fusion
to enhance item representations [8], [10], [13]. However, this
assumption frequently breaks down in practical e-commerce
scenarios. On many commercial platforms, visual and textual
content for the same product is often generated indepen-
dently and optimized for distinct purposes. Product images
are typically curated to emphasize aesthetic appeal or lifestyle
context, while text descriptions focus on keyword optimization
for search engines or highlight product functionalities. This
discrepancy often leads to misaligned semantics across modal-
ities. As illustrated in Figure 1, consider a children’s building
block toy, where the image modality depicts a teddy bear
and colorful blocks, while the text modality mentions terms
such as “Digital learning” and “Early education”. This clearly
introduces semantic inconsistency between the modalities.
Additionally, noise may be present in each modality, such as
irrelevant or misleading image features or imprecise textual
descriptions. This disparity and noise in the information con-
veyed by the two modalities can lead to misalignment, which
may confuse the recommendation model if these modalities
are simply fused without considering their differences. This
motivates the need for a more refined approach that does not
treat all modalities equally, but instead dynamically assesses
the alignment and relevance of each modality to the user’s



evolving preferences.
To address this issue, we propose using item ID embeddings

to extract features from both text and image representations
that align with the user’s preferences. Item ID embeddings
inherently represent the long-term, stable characteristics of
an item in the latent space, while text and image modalities
capture more transient, short-term information. As shown
in Figure 1, the item ID embedding can provide long-term
preference features such as young age, physical toys, and basic
cognition. Based on these long-term preference signals, we
assign different importance to various features of the text and
image modalities, guiding them to reflect the user’s enduring
interests. This approach effectively filters out noise and cross-
modal semantic inconsistencies, ensuring that the generated
multimodal representations are more aligned with the user’s
long-term preferences.

Based on this, we propose a novel framework named ID-
Guided Multimodal Experts with Contrastive Diffusion for
Sequential Recommendation (IMECD). Firstly, we propose the
ID-Guided Multimodal Mixture of Experts (ID-MoE) module,
which leverages ID embeddings as gating signals to selectively
enhance the text and image representations. This design en-
ables the model to extract item representations that align with
long-term user preferences, filtering out noisy or inconsistent
signals from the text and image modalities. Additionally, to
further denoise the user’s interaction sequences, we introduce
the Modality-Specific Vector Quantization (MS-VQ) module.
This module performs denoising on multimodal sequence
representations by independently maintaining learnable code-
books for each modality. This approach effectively reduces
noise in the sequences, ensuring cleaner representations that
improve sequential predictions. Lastly, to model the temporal
dynamics of user interests, we introduce a Contrastive Diffu-
sion Generation (CDG) module. Inspired by recent advances
in diffusion models (DMs), which have shown promising
generative capabilities in sequential modeling tasks, DMs
perform denoising over latent user trajectories to generate the
next item representation. However, diffusion-based generation
may suffer from mode collapse or bias due to data imbalance.
To address this, we incorporate a contrastive learning objective
that explicitly maximizes the representation distance between
the next items from different sequences, thereby encouraging
more diverse and accurate prediction. To the best of our knowl-
edge, this work represents an early exploration of applying
diffusion models to multimodal sequential recommendation.
The contributions of this paper are concluded as follows:

1) We propose a novel ID-Guided Multimodal Mixture
of Experts module, where ID embeddings are used
as gating signals to selectively extract long-term user
preferences information from other modal inputs. This
approach alleviates inconsistencies between modalities
and reduces noise, ensuring that the extracted features
better reflect the user’s long-term preferences.

2) We propose a method called ID-Guided Multimodal
Experts with Contrastive Diffusion for Sequential Rec-
ommendation (IMECD). The ID-MoE module reduces

inconsistencies and noise in item multimodal features,
while the MS-VQ module addresses noise in the user’s
interaction sequences. Additionally, we use a contrastive
loss to mitigate bias in the diffusion generation process.

3) We conduct comprehensive experiments on the Amazon
review dataset to validate the effectiveness and adapt-
ability of the IMECD model. The experimental results
demonstrate that our model significantly outperforms
existing methods.

The rest of our paper is organized as follows. We briefly
review the related work in Section II. In Section III, the
proposed IMECD is described in detail. The experimental
results are reported in Section IV. At last, we draw the
conclusion in Section V.

II. RELATED WORK

A. Traditional Sequential Recommendation

In the early stages of sequential recommendation, a number
of methods rely on markov chains [14], [15], which assume
that the next item depends only on the previous item in the
sequence. With the advent of deep learning, Recurrent Neural
Networks (RNNs), Convolutional Neural Networks (CNNs),
and self-attention are widely adopted to model sequential
behaviors, allowing for better representation of complex user
interests over time. For instance, GRU4Rec [16], Caser [17],
and SASRec [3] utilize RNN, CNN, and self-attention struc-
tures as their basic encoders, respectively. Besides, interest
modeling [18]–[20] has been another popular methodology
for SR, where user interests were usually implemented by
attention or clustering. Despite their success, these traditional
methods primarily focus on modeling interaction histories
based on ID embeddings, often ignoring the rich multimodal
content associated with items, which could provide valuable
additional signals for recommendation.

B. Multimodal Sequential Recommendation

The fusion of multimodal information in sequential rec-
ommendation has gained increasing attention. Recent studies
in multimodal sequential recommendation have focused on
integrating various modalities. MV-RNN [9] employs several
fusion strategies, including addition, concatenation, and recon-
struction, to combine different modal data for SR. UniSRec [8]
introduces a MoE framework that facilitates the transfer of
semantic information from text representations into the ID
embeddings. MMMLP [10] implements multimodal sequential
recommendation via an MLP architecture, enabling feature
fusion and linear-complexity prediction. Building on these
ideas, many subsequent works have designed adaptive fusion
modules to improve the effectiveness of multimodal integra-
tion. MISSRec [11] proposes a lightweight fusion mechanism
that dynamically adjusts user attention across modalities.
MMSR [12] incorporates heterogeneous GNNs for adaptive
fusion, allowing the model to flexibly exploit the relationships
between different modalities. HM4SR [7] develops a two-level
hierarchical MoE to integrate explicit temporal information
into multimodal learning. However, these approaches have
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Fig. 2. The overall framework of the proposed IMECD.

limited capability in capturing items’ latent aspects and users’
diverse preferences [21]. Besides, they often overlook the chal-
lenges posed by semantic inconsistency between modalities.

C. Diffusion Models in Sequential Recommendation

Diffusion models have made remarkable success in com-
puter vision, natural language processing, and many other
fields [22]–[24]. Nowadays, DMs have recently been ex-
plored in sequential recommendation. By corrupting the next-
item representation with Gaussian noise and gradually de-
noising it under the guidance of historical sequences, DMs
effectively model complex user preferences and latent item
semantics [25]. DiffuRec [21] and DreamRec [26] utilize
DMs to model item distribution, generating the next item
through a denoising process guided by interaction sequences.
DiffRec [27] generates globally similar but personalized col-
laborative signals during the denoising process. Some other
works use DMs to improve recommendation performance
through data augmentation. DiffuASR [28] designs a novel
data augmentation framework based on DM for sequential
recommendation. CaDiRec [29] leverages DMs for context-
consistent item replacement, enabling high-fidelity view aug-
mentation. DiffKG [30] integrates DMs with a data augmenta-
tion paradigm, enabling robust knowledge graph representation
learning. Due to the advancements of DMs in SR, we believe
that integrating them into multimodal sequential recommen-
dation is a promising direction.

III. METHOD

Figure 2 illustrates the proposed IMECD framework. The
model consists of three key components: the ID-Guided Mul-

timodal Mixture of Experts (ID-MoE) module, the Modality-
Specific Vector Quantization (MS-VQ) module, and the Con-
trastive Diffusion Generation (CDG) module. The ID-MoE
module utilizes the item ID embeddings as gating signals to
selectively extract preference features from both the text and
image modalities. And then, the MS-VQ module maintains
a codebook for each modality, and performs sequence de-
noising through vector quantization. Finally, the CDG module
performs denoising of the next item representation under
the guidance of the sequence representation. To mitigate the
biases introduced by the DM, we maximize the difference
between the predicted next item representations from different
sequences using a contrastive loss.

A. Problem Formulation

Let U and I denote the sets of users and items, respectively.
𝑠𝑢 = [𝑣1, 𝑣2, · · · , 𝑣𝐿−1] denote the interaction sequence for
user 𝑢 ∈ U, 𝑣𝐿 be the ground-truth next item that the user
will interact with, where 𝑣𝑘 ∈ I is the 𝑘-th interaction in the
chronological sequence. Given historical interaction sequence
𝑠𝑢, sequential recommendation systems predict the next item
𝑣𝐿 that optimally matches user preferences.

B. MultiModal Feature Encoding

We obtain item initial representations from three modalities
in real-world recommendation scenarios: ID, text, and image.
For text and image, we employ pre-trained models to extract
rich representations. Specifically, for item 𝑖 ∈ I, we utilize a
pre-trained RoBERTa [31] model to obtain initial textual rep-
resentations ē𝑡 𝑥𝑡

𝑖
∈ R𝑑𝑡𝑥𝑡 of the item’s descriptive content, and

a pre-trained Vision Transformer (ViT) [32] model to derive
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initial visual representations ē𝑖𝑚𝑔

𝑖
∈ R𝑑𝑖𝑚𝑔 from the item’s

image. As for ID embedding, we initialize it as e𝑖𝑑
𝑖

∈ R𝑑 .
Moreover, we utilize two linear projection layers to align the
dimensionalities of both text and image embeddings with the
ID embedding space:

e𝑡 𝑥𝑡𝑖 = W𝑡 𝑥𝑡 ē𝑡 𝑥𝑡𝑖 + b𝑡 𝑥𝑡 , (1)

e𝑖𝑚𝑔

𝑖
= W𝑖𝑚𝑔ē𝑖𝑚𝑔

𝑖
+ b𝑖𝑚𝑔, (2)

where W𝑡 𝑥𝑡 ∈ R𝑑𝑡𝑥𝑡×𝑑 , W𝑖𝑚𝑔 ∈ R𝑑𝑖𝑚𝑔×𝑑 , b𝑡 𝑥𝑡 ∈ R𝑑

and b𝑖𝑚𝑔 ∈ R𝑑 are trainable parameters. In this way, the
representations of text and image modalities e𝑡 𝑥𝑡

𝑖
∈ R𝑑 and

e𝑖𝑚𝑔

𝑖
∈ R𝑑 can be aligned to the ID embedding space.

C. ID-Guided Multimodal Mixture of Experts

Multimodal sequential recommendation methods often
struggle with several inherent challenges, including semantic
inconsistency across modalities, insufficient alignment with
user preferences, and the introduction of noisy or irrelevant
information during multimodal fusion. To address these limi-
tations, we propose an ID-Guided Multimodal Mixture of Ex-
perts (ID-MoE) module, which extracts modality-specific item
representations that are more closely aligned with user behav-
ior patterns. As illustrated in Figure 3, the ID-MoE architecture
consists of multiple expert networks for different modalities
(e.g., text and image), each responsible for encoding modality-
specific semantic information. A gating network is then used to
adaptively weight and combine expert outputs. Unlike previous
works [7], [8] where gating decisions are derived from the
input modality itself, we introduce item ID embeddings as
an external, stable signal to guide the gating process. ID
embeddings capture long-term user-item interaction semantics
and serve as preference indicators, enabling the gating network
to suppress noisy features and select information that better
aligns with user interests.

Specifically, given the text and image input representation
e𝑡 𝑥𝑡
𝑖

and e𝑖𝑚𝑔

𝑖
of item 𝑖, we design an MoE to adaptively select

expert outputs under the guidance of ID embeddings e𝑖𝑑
𝑖

. We
first compute the gating router vector g𝑡 𝑥𝑡 and g𝑖𝑚𝑔 over 𝑁

experts using the ID embedding:

g𝑡 𝑥𝑡 = Softmax
(
W1e𝑖𝑑𝑖 + b1

)
, (3)

g𝑖𝑚𝑔 = Softmax
(
W2e𝑖𝑑𝑖 + b2

)
, (4)

where W1 ∈ R𝑑×𝑁 ,W2 ∈ R𝑑×𝑁 , b1 ∈ R𝑁 and b2 ∈ R𝑁 are
the learnable weight and bias of the gating routers.

Given the expert routing weights g𝑡 𝑥𝑡 and g𝑖𝑚𝑔, the process
of constructing the MoE-enhanced adaptor for both text and
image modalities is as follows:

e𝑡 𝑥𝑡𝑖 =

𝑁∑︁
𝑛=1

g𝑡 𝑥𝑡𝑛 ·
(
W𝑡 𝑥𝑡

𝑛 e𝑡 𝑥𝑡𝑖 + b𝑡 𝑥𝑡
𝑛

)
, (5)

e𝑖𝑚𝑔

𝑖
=

𝑁∑︁
𝑛=1

g𝑖𝑚𝑔
𝑛 ·

(
W𝑖𝑚𝑔

𝑛 e𝑖𝑚𝑔

𝑖
+ b𝑖𝑚𝑔

𝑛

)
, (6)

where W𝑡 𝑥𝑡
𝑛 ∈ R𝑑×𝑑 and b𝑡 𝑥𝑡

𝑛 ∈ R𝑑 are the learnable weight
and bias of the 𝑛-th expert for text modality. Similary, W𝑖𝑚𝑔

𝑛 ∈
R𝑑×𝑑 and b𝑖𝑚𝑔

𝑛 ∈ R𝑑 represent the learnable weight and bias of
the 𝑛-th expert for the image modality. g𝑡 𝑥𝑡𝑛 and g𝑖𝑚𝑔

𝑛 represents
the routing weight of the 𝑛-th expert for the text and image
modality, respectively.

Finally, we extract the text representation e𝑡 𝑥𝑡
𝑖

and image
representation e𝑖𝑚𝑔

𝑖
that are most relevant to user behavior

preferences for item 𝑖. By aligning text and image repre-
sentations with the user’s long-term preferences, we believe
that the inconsistency issues within the item modalities can
be effectively addressed, thereby improving recommendation
performance.

D. Modality-Specific Vector Quantization

In recommendation systems, user-item interactions often
contain noise that can degrade the quality of learned represen-
tations, particularly when multimodal features are involved.
Inspired by [25], we introduce the Modality-Specific Vector
Quantization (MS-VQ) module, which aims to denoise mul-
timodal features by quantizing them into discrete codebook
vectors.

To begin with, given a interaction sequence 𝑠𝑢 =

[𝑣1, 𝑣2, . . . , 𝑣𝐿−1] of user 𝑢, we can represent its multi-
modal sequence representation as s𝑚 = [e𝑚𝑣1 , e

𝑚
𝑣2 , . . . , e

𝑚
𝑣𝐿−1 ] ∈

R(𝐿−1)×𝑑 , where 𝑚 ∈ {id, txt, img} denotes the modality.
Each item’s multimodal representation e𝑚𝑣𝑘 in the sequence
is obtained through the multimodal feature encoding and ID-
MoE module presented above. And the next item is repre-
sented as e𝑚𝑣𝐿 . We define the semantic codebook for each
modality 𝑚 as C𝑚 =

{
c𝑚𝑧

}𝑍
𝑧=1, where each code vector c𝑚𝑧 ∈

R(𝐿−1)×𝑑 matches the size of the sequence representation, and
𝑍 is the number of discrete code vectors in the codebook.

To quantize the sequence representation, we implement a
code selection model with a Multi-Layer Perceptron (MLP)
to compute the 𝑍-dimensional logits for each sequence repre-
sentation s𝑚 for modality 𝑚. Formally, we have:

o𝑚 = MLP (s𝑚) , (7)

where o𝑚 ∈ R𝑍 represents the output logits generated by the
MLP, which correspond to the importance scores for each code
vector in the codebook.



Rather than performing a deterministic selection of the near-
est code vector, which would introduce non-differentiability,
we adopt a Gumbel-Softmax [33]–[35] approach for differ-
entiable sampling. This enables the selection of the code
vector in a stochastic manner, facilitating end-to-end training
of the quantization process. The Gumbel-Softmax formula is
as follows:

𝑎𝑚𝑧 =
exp((𝑜𝑚𝑧 + 𝑛𝑧)/𝜏)∑𝑍

𝑧′=1 exp((𝑜𝑚
𝑧′ + 𝑛𝑧′ )/𝜏)

, (8)

where 𝑜𝑚𝑧 represents the logit for the 𝑧-th code vector for
modality 𝑚, 𝑛𝑧 is the Gumbel noise, and 𝜏 is the temperature
parameter that controls the smoothness of the sampling. The
output 𝑎𝑚𝑧 ∈ [0, 1] corresponds to the probability of selecting
the 𝑧-th code vector for quantizing the input sequence.

In the forward propagation of training, we adopt 𝑧∗ =

argmax𝑧𝑎
𝑚
𝑧 to select the 𝑧∗-th code vector c𝑚

𝑧∗ for quantizing
the sequence 𝑠𝑚. During training, we utilize the gradient from
the Gumbel-Softmax to further backpropagate towards the
code selection MLP.

After obtaining the quantized representation c𝑚
𝑧∗ for the

sequence 𝑠𝑚, we integrate it with the original sequence repre-
sentation to form the final sequence representation s̃𝑚:

s̃𝑚 = 𝜆𝑞c𝑚𝑧∗ + s𝑚, (9)

where 𝜆𝑞 controls the injection strength of the quantized
representation c𝑚

𝑧∗ .
To further improve the quantization process, the codebook

is updated using an expectation-maximization procedure, com-
monly utilized in clustering algorithms. Specifically, for each
code vector, the sequences selecting that particular vector are
aggregated, and the corresponding code vector is updated as
the mean of these sequences:

c𝑚𝑧 =
1

|𝑆𝑚𝑧 |
∑︁

s𝑚∈𝑆𝑚
𝑧

s𝑚, (10)

where 𝑆𝑚𝑧 denotes the set of sequences in the batch that select
the 𝑧-th code vector. This procedure allows the codebook to
evolve iteratively, ensuring that the code vectors are updated
to better represent the underlying structure of the data and
contribute to improved feature denoising.

E. Contrastive Diffusion Generation

1) Training Phase: Similar to the classical DMs, the dif-
fusion process in our framework comprises both the forward
perturbation and the reverse denoising. In SR, the forward
process gradually adds Gaussian noise to perturb the ground-
truth next item representation. Conversely, the reverse process
restores the perturbed representations from a disordered state
back to the representation space. We adopt a conditional
Denoising Diffusion Probabilistic Model (DDPM) [36] to train
the denoising model.

Specifically, we randomly add 𝑡 steps of Gaussian noise to
the ground-truth next item representation e𝑚𝑣𝐿 of modality 𝑚,
where 𝑚 ∈ {id, txt, img}. We initialize the diffusion process

with x0 = e𝑚𝑣𝐿 . The forward process can be formalized as
follows:

𝑞(x𝑡 | x𝑡−1) := N(x𝑡 ;
√︁

1 − 𝛽𝑡x𝑡−1, 𝛽𝑡I), (11)

where 𝑡 ∈ {1, 2, . . . , 𝑇} represents the diffusion timestep, 𝑇 is
the upper limit of the diffusion step, 𝛽𝑡 ∈ (0, 1) denotes the
added Gaussian noise scale at step 𝑡, I is an identity matrix,
and N denotes the Gaussian distribution.

By applying the reparameterization trick and leveraging the
additive property of independent Gaussian noise, x𝑡 can be
derived directly from x0, as:

x𝑡 =
√︁
𝛼̄𝑡x0 +

√︁
(1 − 𝛼̄𝑡 )𝜖, 𝜖 ∼ N(0, I) (12)

where 𝛼𝑡 = 1 − 𝛽𝑡 and 𝛼̄𝑡 =
∏𝑡

𝑡 ′=1 𝛼𝑡 ′ . This formulation
allows direct sampling of x𝑡 at any timestep 𝑡 from the clean
multimodal representation x0, without the need to iterate over
all intermediate steps.

Next, we choose Transformer as the backbone of the denois-
ing model to reconstruct the clean next item representation x̂0
under the guidance of sequence representation s̃𝑚, which can
be formulated as:

x̂0 = 𝑓𝜃 (x𝑡 , 𝑡, s̃𝑚). (13)

Then, the model is optimized to minimize the Mean-Squared
Error (MSE) loss, which simplifies to:

L𝑟 = E𝑡 ,x0 ,s̃𝑚 , 𝜖

[
| |x0 − 𝑓𝜃 (x𝑡 , 𝑡, s̃𝑚) | |2

]
, (14)

where x0 = e𝑚𝑣𝐿 is the ground-truth next item representation of
modality 𝑚. L𝑟 denotes the reconstruction loss.

Despite the strong representational capacity of DMs, they
can be susceptible to prediction biases caused by imbalances
or inconsistencies in the training data, leading to similar
next item predictions even for different input sequences. To
alleviate this issue and encourage diversity-aware generation,
we incorporate a contrastive learning objective to explicitly
enlarge the representational gap between denoised outputs
from distinct user sequences.

Let x̂0 and x̂′0 denote the denoised next item representation
generated from two different user sequences within the same
mini-batch B. To enhance the distinctiveness of denoised
representations and mitigate mode collapse, we define the
contrastive loss L𝑐 as:

L𝑐 = Ex̂0

log
∑︁

x̂′0∈B

[
exp(sim(x̂0, x̂′0))

] , (15)

where sim(·) denotes the cosine similarity function. By min-
imizing L𝑐, the model is encouraged to reduce the similarity
between denoised outputs of different sequences, thereby
enhancing the ability of the diffusion model to reflect per-
sonalized interest patterns across users.



2) Inference Phase: During the inference phase, we grad-
ually denoise from the standard Gaussian representation x𝑇
and use the sequence representation s̃𝑚 of modality 𝑚 as
guidance to iteratively perform reverse denoising through the
denoiser. Specifically, we approximate the real representation
x𝑇 → x𝑇−1 → . . . → x0 step-by-step.

Specifically, at each reverse step 𝑡, the reverse process can
be defined as:

𝑝𝜃 (x𝑡−1 | x𝑡 ) = N(x𝑡−1; 𝜇𝜃 (x𝑡 , 𝑡), Σ𝜃 (x𝑡 , 𝑡)), (16)

where 𝜇𝜃 and Σ𝜃 are parameterized functions that predict the
mean and variance of the denoised representation, respectively.
𝜃 represents the learnable parameters of the model. Based
on the Gaussian distribution parameterization, we can set
Σ𝜃 = 𝜎2

𝑡 I as constants, where 𝜎2
𝑡 =

1− 𝛼̄𝑡−1
1− 𝛼̄𝑡

𝛽𝑡 . The mean 𝜇𝜃

is parameterized as:

𝝁𝜃 (x𝑡 , 𝑡) =
√
𝛼̄𝑡−1𝛽𝑡
1 − 𝛼̄𝑡

x̂0 +
√
𝛼𝑡 (1 − 𝛼̄𝑡−1)

1 − 𝛼̄𝑡

x𝑡 , (17)

where x̂0 = 𝑓𝜃 (x𝑡 , 𝑡, s̃𝑚) is implemented by a Transformer
model that has been trained during the training phase. The
corresponding stepwise output is computed as:

x𝑡−1 =

√
𝛼̄𝑡−1𝛽𝑡
1 − 𝛼̄𝑡

𝑓𝜃 (x𝑡 , 𝑡, s̃𝑚) +
√
𝛼𝑡 (1 − 𝛼̄𝑡−1)

1 − 𝛼̄𝑡

x𝑡 + 𝜎𝑡𝜖, (18)

where 𝜖 ∼ N(0, I). After 𝑇 reverse steps, we take x0 as the
predicted next item representation of user 𝑢, denoted as p𝑚

𝑢 ,
where 𝑚 ∈ {id, txt, img}.

Next, to estimate the interaction probability between user
𝑢 and the candidate item 𝑖, we compute the relevance score
within each modality and then sum up these scores to obtain
the final prediction 𝑦̂𝑢𝑖 , which can be formulated as below:

𝑦̂𝑢𝑖 = p𝑖𝑑
𝑢 · e𝑖𝑑𝑖 + p𝑡 𝑥𝑡

𝑢 · e𝑡 𝑥𝑡𝑖 + p𝑖𝑚𝑔
𝑢 · e𝑖𝑚𝑔

𝑖
. (19)

F. Model Optimization

Based on the aforementioned network architecture, we ob-
tain the predicted interaction score 𝑦̂𝑚

𝑢𝑖
, which represents the

probability that item 𝑖 will be selected as the next interacted
item by the user 𝑢 under modality 𝑚. To compute this
probability, we first calculate a matching score between the
predicted next item representation p𝑚

𝑢 and the embedding of
each candidate item e𝑚

𝑖
via an inner product. These scores

are then normalized across all candidates using the softmax
function:

𝑦̂𝑚𝑢𝑖 =
exp(p𝑚

𝑢 · e𝑚
𝑖
)∑

𝑗∈I exp(p𝑚
𝑢 · e𝑚

𝑗
) , (20)

where 𝑗 iterates over all candidate items in the set I.
To optimize the model, we adopt the cross-entropy loss as

the primary training objective, which quantifies the discrep-
ancy between the predicted score 𝑦̂𝑚

𝑢𝑖
and the ground-truth

label 𝑦𝑢𝑖 for modality 𝑚.

L𝑐𝑒 = −
∑︁
𝑖∈I

𝑦𝑢𝑖log( 𝑦̂𝑚𝑢𝑖). (21)

To further enhance the quality of next item prediction and
alleviate potential biases during generation, we incorporate

TABLE I
STATISTICS OF THE FOUR DATASETS. “AVG.LENGTH” DENOTES THE

AVERAGE LENGTH OF INTERACTION SEQUENCES

Dataset #Users #Items #Interactions #Avg.length
Toys 147356 49637 1258412 8.54

Games 39828 11364 343349 8.62
Instruments 18870 6619 152271 8.07

Food 107203 32896 946309 8.83

two additional objectives derived from the contrastive diffusion
module. Specifically, the denoising reconstruction loss L𝑟

defined in Equation 14 is employed to guide the model in
recovering the original item embedding from the noisy input
through conditional generation, while the contrastive loss L𝑐

defined in Equation 15 encourages distinguishable generation
by maximizing the representational divergence among differ-
ent sequences.

Finally, we integrate all objectives into a unified training
framework. For each modality (i.e., ID, text, and image), we
compute the cross-entropy loss L𝑚

𝑐𝑒, the reconstruction loss
L𝑚

𝑟 , and the contrastive loss L𝑚
𝑐 , and aggregate them to form

the total optimization objective as follows:

L𝑡𝑜𝑡𝑎𝑙 =
∑︁

𝑚∈{id,txt,img}

(
L𝑚

𝑐𝑒 + L𝑚
𝑟 + 𝜆𝑐L𝑚

𝑐

)
, (22)

where 𝜆𝑐 are hyperparameters that control the contributions
of the contrastive loss. This joint optimization encourages
the model to not only fit the observed interactions but also
to generate robust and personalized representations for future
item prediction.

IV. EXPERIMENT

Extensive experiments are conducted to evaluate the ef-
fectiveness of the proposed model. The experiments aim to
answer the following research questions:

RQ1: Does the proposed IMECD outperform the state-of-
the-art SR methods?

RQ2: How do different components contribute to IMECD?
RQ3: How do different choices of hyper-parameters affect

the performance of IMECD?

A. Experimental Setting

1) Datasets: Following existing methods [7], [11], we eval-
uate IMECD on a real-world recommendation dataset, namely
the Amazon review dataset 1 [37]. Specifically, we select
four types of datasets: Toys and Games (Toys), Video Games
(Games), Musical Instruments (Instruments), and Grocery and
Gourmet Food (Food). We use the 5-core subsets, in which all
users and items have at least 5 reviews.

To support multimodal inputs, we extract item textual infor-
mation from the metadata, including the item’s title, brand, and
category. Additionally, we obtain item images by parsing the
metadata’s URL to retrieve the corresponding product images.
Some items in the dataset have missing text or image data,

1https://cseweb.ucsd.edu/ jmcauley/datasets/amazon v2/



TABLE II
PERFORMANCE COMPARISON OF DIFFERENT BASELINE METHODS.THE BEST AND THE SECOND-BEST PERFORMANCE IS BOLD AND UNDERLINED

RESPECTIVELY.

Dataset Metric GRU4Rec SASRec BERT4Rec Caser DifffuRec DiQDiff UniSRec MISSRec MMMLP HM4SR IMECD Improve

Toys

H@5 0.0633 0.0732 0.0398 0.0155 0.0776 0.0779 0.0486 0.0791 0.0792 0.0794 0.0825 3.90%
H@10 0.0768 0.0924 0.0515 0.0220 0.0961 0.0938 0.0638 0.0961 0.0935 0.0955 0.0977 1.66%
N@5 0.0518 0.0547 0.0307 0.0109 0.0614 0.0632 0.0377 0.0586 0.0643 0.0642 0.0679 5.60%
N@10 0.0561 0.0609 0.0345 0.0130 0.0673 0.0683 0.0426 0.0638 0.0696 0.0694 0.0728 4.60%

Games

H@5 0.0986 0.0948 0.0531 0.0326 0.1033 0.1032 0.0870 0.1004 0.1084 0.1075 0.1133 4.52%
H@10 0.1361 0.1319 0.0813 0.0548 0.1404 0.1386 0.1240 0.1343 0.1434 0.1466 0.1485 1.30%
N@5 0.0752 0.0701 0.0360 0.0200 0.0793 0.0813 0.0621 0.0715 0.0835 0.0830 0.0883 5.75%
N@10 0.0872 0.0820 0.0451 0.0271 0.0912 0.0927 0.0740 0.0819 0.0955 0.0956 0.0997 4.29%

Instruments

H@5 0.1041 0.1061 0.0380 0.0603 0.1027 0.1041 0.0933 0.1076 0.1084 0.1094 0.1120 2.38%
H@10 0.1238 0.1247 0.0632 0.0736 0.1190 0.1182 0.1167 0.1220 0.1280 0.1288 0.1305 1.32%
N@5 0.0900 0.0894 0.0232 0.0519 0.0907 0.0920 0.0841 0.0916 0.0937 0.0955 0.0975 2.09%
N@10 0.0964 0.0954 0.0314 0.0562 0.0959 0.0966 0.0916 0.0942 0.1000 0.1020 0.1034 1.37%

Food

H@5 0.1329 0.1324 0.0917 0.0655 0.1373 0.1364 0.1021 0.1324 0.1374 0.1356 0.1401 1.96%
H@10 0.1488 0.1496 0.1060 0.0769 0.1525 0.1530 0.1218 0.1456 0.1534 0.1520 0.1556 1.43%
N@5 0.1164 0.1126 0.0768 0.0505 0.1185 0.1202 0.0797 0.1152 0.1164 0.1162 0.1216 1.16%
N@10 0.1215 0.1182 0.0815 0.0542 0.1230 0.1232 0.0860 0.1192 0.1222 0.1215 0.1266 2.76%

so we remove those with incomplete multimodal information
for fairness. Finally, we retain items and users with more
than 5 interactions, ensuring sufficient data for training and
evaluation. Statistics of these datasets are listed in Table I.

2) Evaluation Metrics: Following previous works [13],
[25], [38], we adopt two standard metrics, i.e., Hit Rate
(H@K) and Normalized Discounted Cumulative Gain (N@K),
to evaluate the recommendation performance. We set K to 5
and 10 for showcases.

3) Baselines: To verify the effectiveness of our method, we
select the following representative and competitive baselines
for sequential recommendation from three categories.

1) Traditional Methods. GRU4Rec [16] employs gated
recurrent units to enhance standard RNN capabilities,
partially addressing the vanishing gradient issue. SAS-
Rec [3] adopts self-attention mechanisms y to learn user
sequential interest. BERT4Rec [39] is a bidirectional
transformer model for SR. Caser [17] is a CNN-based
model that captures both local and global sequential
patterns for SR.

2) Diffusion-based Methods. DiffuRec [21] introduces
DMs to sequential recommendation, generating adaptive
item distributions to better capture user preferences.
DiQDiff [25] enhances DMs by quantizing user se-
quences and contrastively diversifying item generation
to overcome noise and popularity bias.

3) MultiModal Methods. UniSRec [8] uses MoE adapters
to encode item texts for SR. MISSRec [11] designs an
interest discovery module to grasp deep relations among
items, modalities, and preferences. MMMLP [10] is a
pure MLP-based SR model that efficiently integrates
multimodal data through specialized feature mixer and
fusion mixer layers. HM4SR [7] uses hierarchical MoEs
to purify multimodal signals and model temporal dy-

namics for SR.
4) Implementation and Hyperparameter Setting: We im-

plement our framework using PyTorch. The maximum length
of each behavior sequence is limited to 50. The textual and
visual features are extracted using pre-trained models, namely
roberta-based2 and vit-base-patch16-2243, both obtained from
the Hugging Face model repository. We employ the Adam
optimizer, where the initial learning rate is 0.001. We set the
training batch size as 1280, and the hidden size of all methods
is 128. The dropout rates for both the denoising model and
item embeddings are set to 0.1. The temperature 𝜏 of Gumbel-
Softmax is set to 0.1. For the denoiser of the ID modality,
the number of attention heads and self-attention layers in the
Transformer are set to 4 and 4, respectively. For the denoisers
of the text and image modalities, the number of attention heads
and self-attention layers in the Transformer are set to 4 and 1,
respectively. To balance efficiency and quality, we set 𝑇 = 32
for DDPM’s diffusion timesteps and adopt a truncated linear
noise schedule. The expert number 𝑁 for ID-MoE is selected
from {2, 4, 6, 8, 10}. The codebook size 𝑍 is selected from
{8, 16, 24, 32, 40}. The strengths 𝜆𝑐 of the contrastive loss are
varied within the range {0.1, 0.3, 0.5, 0.7, 0.9}, while the injec-
tion strength 𝜆𝑞 of the quantized vector are also varied within
the range {0.1, 0.3, 0.5, 0.7, 0.9}. All baselines are conducted
based on their GitHub source code. All hyperparameters are
determined according to the performance in the validation
data. All results are reported in the test set. We perform all
the experiments on NVIDIA GeForce RTX 3090 GPUs.

B. Performance Comparisons (RQ1)

In our experiments, we compare the performance of IMECD
with several state-of-the-art recommendation models across

2https://huggingface.co/FacebookAI/roberta-base
3https://huggingface.co/google/vit-base-patch16-224



TABLE III
MODEL PERFORMANCE OF ABLATION STUDY. THE BEST RESULTS ARE

BOLD.

Dataset Metric H@5 H@10 N@5 N@10

Toys

w/o ID-MoE 0.0811 0.0962 0.0667 0.0720
w/o MS-VQ 0.0820 0.0971 0.0671 0.0715
w/o CDG CL 0.0820 0.0969 0.0676 0.0722
w/o Text 0.0806 0.0958 0.0665 0.0714
w/o Image 0.0794 0.0958 0.0651 0.0703
IMECD 0.0825 0.0977 0.0679 0.0728

Games

w/o ID-MoE 0.1098 0.1478 0.0845 0.0968
w/o MS-VQ 0.1124 0.1450 0.0874 0.0979
w/o CDG CL 0.1128 0.1473 0.0878 0.0990
w/o Text 0.1095 0.1431 0.0856 0.0964
w/o Image 0.1130 0.1451 0.0877 0.0979
IMECD 0.1133 0.1485 0.0883 0.0997

Instruments

w/o ID-MoE 0.1112 0.1297 0.0960 0.1028
w/o MS-VQ 0.1111 0.1301 0.0969 0.1024
w/o CDG CL 0.1109 0.1300 0.0964 0.1023
w/o Text 0.1081 0.1256 0.0948 0.1004
w/o Image 0.1096 0.1268 0.0960 0.1015
IMECD 0.1120 0.1305 0.0975 0.1034

Food

w/o ID-MoE 0.1397 0.1550 0.1207 0.1262
w/o MS-VQ 0.1396 0.1552 0.1214 0.1261
w/o CDG CL 0.1388 0.1541 0.1210 0.1259
w/o Text 0.1396 0.1544 0.1211 0.1260
w/o Image 0.1391 0.1552 0.1213 0.1264
IMECD 0.1401 0.1556 0.1216 0.1266

four different datasets, and the experimental results are pre-
sented in Table II. We have the following findings.

(1) IMECD outperforms all the baseline models across
the four datasets. It achieves improvements ranging from
1.16% to 9.68% compared to the best diffusion-based method.
Compared to the best multimodal method, IMECD gains
relative performance improvements ranging from 1.3% to
5.75%. It is worth mentioning that our method outperforms
all other multimodal baselines in all cases, which can be
attributed to the effectiveness of the proposed ID-MoE module
in mitigating modality inconsistencies and noise, as well as
the integration of the DM for dynamically modeling user-item
interactions.

(2) The diffusion-based approach consistently outperforms
traditional sequential models. This validates the power of
the iterative denoising process inherent in diffusion models.
Unlike traditional models, which rely on sequential learning
over static embeddings, IMECD leverages a dynamic diffusion
process that progressively refines noisy item representations.
The iterative denoising further addresses challenges posed by
data sparsity and user interaction variability, providing a more
robust modeling approach.

(3) In most cases, multimodal methods outperform both
traditional methods and diffusion-based methods that only use
ID embeddings. This suggests that incorporating multimodal
information, including text and images, significantly enriches

item representations, enabling the model to capture a wider
range of user preferences.

C. Ablation Study (RQ2)

In this section, we conduct an ablation study to evaluate the
effectiveness of various components in IMECD. Specifically,
we design the following five model variants.

1) w/o ID-MoE: it disables the ID-Guided Multimodal
Mixture of Experts (ID-MoE) module.

2) w/o MS-VQ: it excludes the Modality-Specific Vector
Quantization (MS-VQ) module.

3) w/o CDG CL: it removes the contrastive learning
component from the Contrastive Diffusion Generation
(IMECD) module.

4) w/o Text: it removes the text modality from the model.
5) w/o Image: it removes the image modality from the

model.

The results of the ablation experiments are shown in
Table III, where we evaluate the performance of IMECD
across four datasets: Toys, Games, Instruments, and Food. The
results indicate that each component of the IMECD contributes
significantly to its overall performance. Specifically, disabling
the ID-MoE module leads to a decrease in performance
across all datasets. This finding indicates that the ID-MoE
module can effectively extract user preference features from
both textual and visual representations under the guidance of
ID embeddings, thereby enhancing recommendation perfor-
mance. Furthermore, excluding the MS-VQ module results in
performance drops. This indicates that the MS-VQ module
effectively denoises sequence representations through vector
quantization, which is crucial for enhancing user representa-
tions. Removing the contrastive learning component from the
CDG module leads to a decrease in performance across all
datasets. This highlights the importance of contrastive learning
in mitigating diffusion biases and improving the diversity
and accuracy of next item predictions. Additionally, the per-
formance further deteriorates when either the text or image
modality is removed. This confirms that both textual and visual
features play vital roles in enriching item representations and
improving recommendation performance. Overall, the abla-
tion studies provide strong evidence that each component of
IMECD contributes synergistically to its superior performance.

D. Parameter Sensitivity Analysis (RQ3)

In this section, we conduct a parameter sensitivity experi-
ment to evaluate the impact of different hyperparameters on
the performance of IMECD. Specifically, we investigate the
following parameters: the number of experts 𝑁 for ID-MoE,
the codebook size 𝑍 for MS-VQ, the injection strength 𝜆𝑞
of quantized vectors from MS-VQ, and the contrastive loss
weight 𝜆𝑐 of CDG, respectively. The analysis is conducted on
Toys and Games datasets. We evaluate the performance using
H@5 and N@5 metrics.



Fig. 4. Performance with different numbers of experts 𝑁 for ID-MoE on Toys and Games.

Fig. 5. Performance with different size of codebook 𝑍 for MS-VQ on Toys and Games.

Fig. 6. Performance with different injection strength 𝜆𝑞 and contrastive loss
𝜆𝑐 on Toys.

Fig. 7. Performance with different injection strength 𝜆𝑞 and contrastive loss
𝜆𝑐 on Games.

1) Impact of the Number of Experts: Figures 4 shows the
performance of IMECD with varying numbers of experts 𝑁 .
For the Toys dataset, H@5 and N@5 both increase as 𝑁

grows, reaching their highest values at 𝑁 = 10, indicating that
more experts can better capture user preferences. However,
the performance at 𝑁 = 6 shows a small decrease, which
could be attributed to an imbalance in the distribution of tasks
among the experts. In the Games dataset, H@5 and N@5
achieve their highest values at 𝑁 = 8. However, when 𝑁 is

further increased to 10, the performance slightly decreases.
This finding suggests that increasing the number of experts
can add complexity to the model and may lead to diminishing
returns. Overall, more experts generally improve performance,
but the optimal number varies by dataset.

2) Impact of the Codebook Size: Figures 5 shows the
impact of the codebook size 𝑍 on model performance for
both the Toys and Games datasets. For both Toys and Games
datasets, H@5 and N@5 improve as 𝑍 increases, peaking at
𝑍 = 24. Beyond this point, performance slightly drops, likely
due to increased complexity and potential overfitting. This
indicates that a larger codebook helps the model capture more
granular details of item representations, but after a certain size,
the added complexity does not provide significant benefits
and may even degrade performance due to overfitting. In
conclusion, for both datasets, the codebook size of 24 appears
to provide the best balance between capturing fine-grained
item representations and maintaining model efficiency.

3) Impact of the Injection Strength of Quantized Vectors:
Figure 6 and Figure 7 present the Impact of the injection
strength of quantized vectors 𝜆𝑞 for the Toys and Games
datasets, respectively. For the Toys dataset, as 𝜆𝑞 increases,
the model performance generally improves initially, reaching
its peak at 𝜆𝑞 = 0.7, and then starts to decrease. On the Games
dataset, however, the performance follows a different trend.
It initially decreases as 𝜆𝑞 increases and then improves after
reaching a certain point. Overall, the impact of the injection
strength of quantized vectors varies across different datasets.

4) Impact of the Contrastive Loss Weight: Figure 6 and
Figure 7 show the impact of the contrastive loss weight 𝜆𝑐
on the Toys and Games datasets, respectively. On the Toys
dataset, as the contrastive loss weight 𝜆𝑐 increases, the model



performance fluctuates, showing inconsistent trends. In con-
trast, on the Games dataset, the performance initially decreases
and then increases as the contrastive loss weight increases. The
optimal performance point differs across datasets, indicating
that the effect of the contrastive loss weight varies depending
on the dataset.

V. CONCLUSION

To address the inconsistency and noise issues commonly
observed in existing multimodal methods for sequential rec-
ommendation, we introduce IMECD, a novel framework that
combines the strengths of diffusion models and multimodal
information to enhance sequential recommendation perfor-
mance. Our method leverages the long-term stable semantics
encoded in item ID embeddings, guiding the text and im-
age modalities through a MoE mechanism. Additionally, we
introduced an MS-VQ module for quantizing and denoising
multimodal sequences. The diffusion model is then used to
iteratively denoise and generate the next item representa-
tion, with a contrastive loss integrated to mitigate diffusion
bias. Extensive experiments conducted on multiple benchmark
datasets confirm the superiority of IMECD over existing state-
of-the-art SR methods. IMECD not only effectively addresses
the issues of multimodal feature inconsistency and noise but
also represents a novel application of diffusion models in
multimodal sequential recommendation, offering a promising
direction for future research in this field.
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