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Abstract—Cross-domain recommendation (CDR) aims to uti-
lize information from multiple domains to alleviate data spar-
sity and user cold-start problems in recommendation systems.
However, current CDR methods primarily rely on ID-based
features, which fail to capture the detailed characteristics of
items. This limitation restricts their effectiveness, particularly
in addressing the item cold-start problem, where new or rarely
interacted items are difficult to recommend. To address this
issue, we propose a Multi-Modal Diffusion model for Cross-
Domain Recommendation (MMDCDR). Instead of using tra-
ditional ID-based representations, we extract item multi-modal
(e.g., text and image) representations from pre-trained models,
which effectively disentangles fine-grained item features and
alleviates the cold-start problem for items. To enhance CDR
with multi-modal data, we use a diffusion model to transfer
information across domains. By conditioning on the user’s
representation in the source domain, our model progressively
denoises and generates the user’s representation in the target
domain. Then, we design a modality-aware contrastive aug-
mentation strategy to enhance the consistency between multi-
modal representations. Extensive experiments on large real-
world datasets demonstrate the effectiveness and superiority of
MMDCDR in cold-start scenarios. The code has been available
at https://anonymous.4open.science/r/MMDCDR-Oner.

Index Terms—cross-domain recommendation, multi-modal,
diffusion model, cold-start problem.

I. INTRODUCTION

In the era of exponential information growth, recommenda-
tion systems have become essential tools for assisting users
in efficiently identifying relevant content within extensive
datasets [1], [2]. However, traditional recommendation systems
heavily rely on abundant historical user data. When encoun-
tering new users, known as cold-start users, limited behavioral
data often leads to poor recommendation performance [3], [4].

To address this challenge, cross-domain recommendation
(CDR) [5] has garnered significant attention as a method
that transfers knowledge from a source domain to enhance
recommendation performance in a target domain [6]. The
core task of CDR is to bridge user’s preferences in the
source domain and the target domain, also called preference
transfer [7]. CDR have shown great success in alleviating
the serious data sparsity and user cold-start problems [8],
[9]. Generally, most existing CDR methods [7], [10]-[12]
adopt the concept of embedding and mapping. Specifically,
these methods usually use collaborative filtering models to
separately obtain ID representations in the source and target
domains, and then train a mapper using a number of users
existing in both domains (i.e., overlapping users) to map user
representations from the source domain to the target domain.
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Fig. 1. A comparison of cross-domain knowledge transfer based on ID

information (left) and multi-modal information (right).

Other studies [13]-[15] use meta-learning methods to capture
specific user preferences in CDR.

However, most existing work relies on ID information to
learn knowledge transfer across domains. But item IDs are
merely symbolic identifiers and fail to capture detailed item
features [16], [17]. From a statistical perspective, they capture
only the co-occurrence patterns of preferences across domains.
Moreover, the absence of intrinsic item features in IDs limits
the model’s generalization to new or rarely interacted items,
which is called item cold-start problem. As illustrated in the
left part of Figure 1, the co-occurrence pattern indicates that
if a user interacts with item v in the source domain and also
with items v, or v3 in the target domain, recommending v,
and v3 to a cold-start user in the target domain who interacted
with v is a reasonable strategy. However, for cold-start items
like v4, which have not been interacted with by any users,
ID-based methods lack sufficient historical interaction data to
recommend them directly, thereby highlighting the significant
challenge posed by the item cold-start problem.

To address these limitations, we replace ID information
with multi-modal features in CDR. Multi-modal features,
such as text descriptions and images, can disentangle fine-
grained characteristics of items. As shown in the right part
of Figure 1, multi-modal representations can learn knowledge
transfer patterns between items’ fine-grained features (noted
in italics in the figure). For a cold-start user in the target
domain who has interacted with Les Misérables in the source
domain, we can learn that the fine-grained features of Les
Misérables include Love, Freedom, etc., which also appear in



Roman Holiday and Braveheart. Therefore, recommending the
corresponding songs Lover and We Will Rock You is a wise
strategy. Moreover, based on the items’ fine-grained features,
the model can recommend similar songs such as Someone
Like You and We Are the Champions , even if they are cold-
start items. In conclusion, unlike ID information that can
only capture cross-domain co-occurrence behaviors, multi-
modal information can learn transfer patterns between
the fine-grained features of cross-domain items, thereby
improving the model’s ability to address the item cold-
start problem.

Although introducing multi-modal features is a promising
direction, applying them to CDR remains a challenge. Existing
methods mainly rely on mapping techniques that align ID-
based representations from the source domain to the target
domain. However, these methods do not achieve better results
on multi-modal features because they have difficulty disen-
tangling fine-grained item features, making it challenging to
capture the complex and subtle differences between domains.
Additionally, these methods focus on individual data samples
rather than capturing broader distribution patterns, limiting
their ability to generalize to unseen data. In contrast, diffusion
models progressively refine noisy inputs and naturally model
complex data distributions [18], making them well-suited for
estimating target embedding distributions in CDR.

To handle the challenges mentioned above, we propose a
novel framework named Multi-Modal Diffusion model for
Cross-Domain Recommendation (MMDCDR). Our method
leverages rich multi-modal representations to replace the ID-
based representations in traditional methods. Specifically, we
first obtain the initial textual and visual representations of
items using pre-trained models. Inspired by the success of
Diffusion Models (DMs) in image generation tasks [19],
[20], we then employ conditional diffusion models to transfer
multi-modal representations across domains. In detail, we
progressively add noise to the multi-modal representations
of overlapping users in the target domain. Then, we use the
source domain’s multi-modal representations as conditions to
guide the model in denoising and progressively generating
the user’s representation in the target domain. Furthermore,
to improve the consistency of representations between dif-
ferent modalities, we propose a modality-aware contrastive
enhancement module. By applying diffusion models to multi-
modal feature CDR, we not only enhance the fine-grained
transfer of item features across domains, but also improve the
model’s ability to generalize to cold-start items. Furthermore,
by leveraging the advantages of the diffusion process, the
model can learn to transfer patterns between multi-modal data
distributions, providing a powerful research direction for cross-
domain transfer techniques. The contributions of this paper are
concluded as follows:

1) We deeply investigate the differences between ID-based
information and multi-modal information in CDR. By
utilizing multi-modal information, we model the fine-
grained features of items, which enhances the transfer
of user preferences across domains and effectively ad-

dresses the item cold-start problem.

2) We propose a multi-modal diffusion model for CDR,
called MMDCDR. We employ a conditional diffusion
model to transfer multi-modal features from the source
domain to the target domain, and then design a con-
trastive learning framework to enhance the multi-modal
representations. To the best of our knowledge, this is
the first work to apply diffusion models based on multi-
modal information in the field of CDR.

3) We conduct comprehensive experiments on the Ama-
zon review dataset to validate the effectiveness and
adaptability of the MMDCDR model in cold-start CDR
scenarios. The experimental results demonstrate that our
model significantly outperforms existing methods.

The rest of our paper is organized as follows. We briefly
review the related work in Section II. In Section III, the
proposed MMDCDR is described in detail. The experimental
results are reported in Section IV. At last, we draw the
conclusion in Section V.

II. RELATED WORK
A. Cross-Domain Recommendation

In recent years, numerous CDR methods have been pro-
posed. Since our work focuses specifically on the cold-start
recommendation problem, we only focus on CDR approaches
which recommend items to cold-start users. Early CDR
methods, such as Collective Matrix Factorization (CMF) [5],
integrate knowledge across domains by combining rating
matrices and sharing user factors. Recently, the embedding
and mapping paradigm (EMCDR) [10] are introduced to
transfer representations across domain. SSCDR [11] proposes
a semi-supervised mapping function for cross-domain transfer.
LACDR [12] further refines this approach by aligning user
representations in a low-dimensional space. Another line of
research applies meta-learning to CDR. PTUPCDR [15] and
TMCDR [13] replace the mapping function with a meta-
network to enhance transferability. DREAM [21] enhances
CDR by decoupling preferences, leveraging contrastive learn-
ing and focal loss for better performance. CDRNP [22] lever-
ages neural processes to capture both user-specific preferences
and correlations among users. CSNBR [23] addresses the neg-
ative transfer problem in CDR through graph reconstruction.
However, existing methods rely solely on ID-based numerical
information for transfer, which offers limited effectiveness in
capturing item features and user behavioral preferences.

B. Diffusion Models in Recommendation

Diffusion Models, known for their effectiveness in uncer-
tainty injection and data augmentation in image synthesis [24],
have recently been explored in recommendation systems. Dif-
fuRec [25] utilize the DM for the sequential recommendation.
DiffRec [26] generates globally similar but personalized col-
laborative signals during the denoising process. DiffKG [27]
applies knowledge graphs to DMs. Recent methods employ
conditional diffusion models for recommendation tasks. By
introducing conditional variables, DMs guide and constrain the
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Fig. 2. The overall framework of the proposed MMDCDR.

generative process, enabling the model to produce target data
that aligns with the specified conditions. MCDRec [28] inte-
grates multi-modal data into the collaborative representation
of items by using it as a conditioning factor. DiffuASR [29]
utilizes item sequences as conditions to perform data augmen-
tation. Inspired by conditional diffusion models, we introduce
this approach into CDR. We hypothesize that using user
representations from the source domain as conditions to guide
the generation of target domain representations is a promising
direction.

C. Multi-modal Recommendation

The multi-modal recommendation aims to integrate the
multi-modal features of items into representation learning,
addressing the challenge of data sparsity in recommenda-
tion systems [28]. Previously, attention-based models such
as ACF [30] and VECF [31] utilize multi-modal content to
capture complex user preferences. Inspired by Graph Neural
Networks (GNNs), MMGCN [32] employs graph convolu-
tional networks for feature aggregation to enhance user and
item representations. MMSR [33] adopts a dual-attention
mechanism to distinguish between homogeneous and het-
erogeneous neighbor nodes. DRAGON [34] builds separate
homogeneous and heterogeneous graphs to obtain dual rep-
resentations for users and items. However, there is limited
research on incorporating multi-modal information into CDR.
We argue that leveraging multi-modal information for cross-

domain knowledge transfer is more effective than relying on
traditional collaborative information.

III. METHOD
A. Problem Formulation

In the context of CDR, we consider both a source domain
and a target domain. Each domain consists of a set of users,
U ={uj,uy,...}, asetof items 7 = {v|,vy,...} and a rating
matrix R. Each element r;; € R represents the rating between
user u; and item v ;. To differentiate between the two domains,
we denote the user, item sets, and the rating matrix of the
source domain as US, 75, RS, while U, I, R" for the target
domain. The set of overlapping users is defined as U° = U N
U". In contrast, 7° and I’ are disjoint, implying that there
are no shared items between the two domains.

B. Framework

Figure 2 illustrates the proposed MMDCDR. First, we
obtain initial multi-modal representations of items and users
using pre-trained models. To facilitate knowledge transfer
between domains, we introduce a diffusion model to generate
user representations in the target domain. Specifically, we
progressively corrupt the original user representations in the
target domain. By conditioning on the user’s representation in
the source domain, we guide the model to iteratively recover
the user’s representation in the target domain through a denos-
ing process. Finally, we introduce modality-aware contrastive
learning to enhance the multi-modal representations of users



and items. In this way, the model learns modality-invariant
features and effectively aligns the multi-modal representations.

C. Multi-Modal Feature Encoding

To effectively capture the multi-modal characteristics of
items and users, we employ pre-trained models to extract
rich representations. For item encoding, we utilize a pre-
trained RoBERTa [35] model to obtain textual representations
of the item’s descriptive content, and a pre-trained Vision
Transformer (ViT) [36] model to derive visual representations
from the item’s image.

To simplify notation, we denote the multi-modal repre-
sentation of item v; € I as ej”.’, where m € {text,img}
represents the modality (i.e., text or image). Since the item
features obtained from different modality encoders reside in
different feature spaces, we apply a linear projection function
to map each feature vector eT of item v; into a shared low-
dimensional latent space.

VT =eTWm+bm, (D

where W,,, € Rm*d | e R4 denote the linear transforma-
tion matrix and bias in the linear projection function. In this
way, the representations of each modality v’]." can be aligned
into the same latent space.

For user representations, we aggregate the multi-modal em-
beddings of all items the user has interacted with. Specifically,
we apply average pooling to the textual and visual embeddings
of the items that user u; € U’ has interacted with to generate
the user’s multi-modal representations u'™*' and w;"*. For
simplicity in subsequent representations, we denote the multi-
modal representation of user u; as u". To explicitly distinguish
between the source and target domains, we denote the source
domain and target domain multi-modal representations of user
u; as u"* € R%nd u™" € RY, respectively.

Through this method, we obtain the initial multi-modal
representations of users and items, enabling the extraction of
more detailed item content information and user behavioral
preferences. Even for items with little or no interactions,
leveraging multi-modal information allows for effective rec-
ommendations.

D. Conditional Diffusion Representation Learning

In this section, we introduce diffusion model into CDR.
Similar to the classical DMs, our method comprises two
processes: a forward process and a reverse process. The
forward process involves gradually adding Gaussian noise to
perturb the original data distribution. Conversely, the reverse
process progressively restores the perturbed representations
from a disordered state back to the representation space. The
difference is that we incorporate the user’s source domain rep-
resentation as a condition into the diffusion process, aiming to
guide the generation of the user’s target domain representation.
Unlike traditional mapping methods, DM estimates the user
embedding distribution in the target domain while accounting
for specific user preferences in the source domain. This
enables more effective cross-domain transfer of multi-modal

features, making the diffusion model a promising approach for
knowledge transfer in CDR.

1) Forward Process: In the forward process of the DM,
we progressively add noise to the multi-modal feature repre-
sentation ul'."’t of user u; € U° in the target domain, where
m € {text,img}. We initialize the diffusion process with
u’"'. The forward process is defined as:

C](Xr | erl) =N(x; Vl —ﬂrerl,,BrI), )

where r € {1,2,..., R} represents the diffusion timestep, R
is the upper limit of the diffusion step, 8, € (0, 1) denotes
the added Gaussian noise scale at step r, and N denotes the
Gaussian distribution. As R — oo, Xg converges to a Gaussian
distribution.

By applying the reparameterization trick and leveraging the
additive property of independent Gaussian noise, X, can be
derived directly from xg, as:

q(xr | XO) = N(Xr; \/EXO’ (1 - (_lr)I)’ 3)

where @, = 1 — B, and @, = [],._, @. This formulation
directly samples x, at any timestep r from the clean multi-
modal feature Xy, without needing to iterate over all previous
steps.

2) Reverse Process: The reverse process is the core phase
of the DM, where we iteratively denoise the noisy represen-
tation xg over R time steps to reconstruct the original target
domain representation xq. To enhance the generation process
specific to the target domain, we leverage the source domain
user representations u;"* as conditional guidance. At each
reverse step r, the reverse process unfolds as follows:

Xp =

pG(Xr—l | Xy, u:n’s) = N(XT—I;MG(XF’ u;ﬂ,S’ r>’ ZG(XI" I")),
“4)
where (g and Xy are parameterized functions that predict the
mean and variance of the denoised representation, respectively.
0 represents the learnable parameters of the model. Based on

the Gaussian distribution parameterization, we can set Xy =
2 1@

o1 as constants, where o> = T==tBy. As for the mean of
the distribution, it can be expressed as:
1 Br

ﬂf)(xr’u;‘”’s’r) = Eg(Xr,ll:n’s,V) ’ (5)

\/GTV * Vl - C_yr
where €g(x,,u;"*,r) is the noise estimation network, which
estimates the noise present in X, at step r under the guidance
of ul™*.

In image generation tasks, the noise estimation network
€p is commonly implemented using U-Net architectures [37].
However, in our task, the data consists of low-dimensional,
non-image representations, making the use of U-Nets less
appropriate. We construct the noise prediction model €4 using
L layers of perceptrons, which already achieve strong perfor-
mance in our experiments.

3) Classifier-Free Guidance: To further enhance the flexi-
bility of the conditional generation, we adopt a classifier-free
guidance strategy [20]. This technique allows us to modulate
the influence of the conditional information directly within the



diffusion model, without the need for an auxiliary classifier.
By interpolating between conditional and unconditional noise
estimates, we gain finer control over the generation process,
leading to improved sample quality and better alignment with
the conditioning signals. The core idea behind classifier-free
guidance is to use a single noise estimation function €y that
is capable of predicting both conditional and unconditional
noise.

During the reverse process, we adjust the noise prediction
to balance between unconditional and conditional estimates.
The adjusted noise prediction function éy is defined as:

6(-1(Xr7 1) =eg(Xp,7) + 8- (e(-)(xra u:n,,s’ r) — €g(X, r)) >

(6)
where X, is the noisy data at time step r. um’s is the
modality-specific conditional information. ey (X,, Sr) is

the conditional noise estimation function, predicting the noise
given X, and conditioning u;"*. €y(x,,r) is the unconditional
noise estimation function, predicting the noise given x,- alone.
Specifically, with a certain probability, we replace the condi-
tioning vector u;"* with a zero vector during training. g > 0 is
the guidance scale that controls the strength of the conditioning
influence.

4) Training Objective: The training objective of the diffu-
sion model is to minimize the Mean-Squared Error (MSE) loss
between the true noise € and the predicted noise ég:

Lpm, =E, €[0,R],xp~q (™", e~N(0,I) lle — éa(x, 1 i o ”)“
(7)

5) Inference of Conditional Diffusion Model: During the
inference phase, we start with Gaussian noise €’ and use the
user’s representation in the source domain u?"* as guidance
to iteratively perform reverse denoising through the denoiser.
Specifically, we set Xg = €’ to execute reverse denoising Xg —
— Xq for R steps. Finally, we take X as the user’s
representation in the target domain, denoted as o

Following previous work [18], we introduce an alignment
module to reduce the randomness inherent in the DM. Specif-
ically, we implement this alignment using a Multilayer Per-
ceptron (MLP):

f(R_1—>...

o’ = MLP(a/™"). (8)

In this way, we can adjusts the predicted representation &’ €

R to better match the ground-truth user representation 1n the
target domain.

E. Modality-aware Contrastive Augmentation

In multi-modal recommendation scenarios, users interact
with these multi-modal items in ways that exhibit consis-
tent patterns across different modalities. For instance, a user
interested in action movies may demonstrate a preference
for both the visual effects and the exciting plot descriptions
of such movies. Capturing these cross-modal consistencies
is crucial for understanding user preferences and enhancing
recommendation performance.

Building upon the DM introduced in section III-D, we
obtain the user’s multi-modal representations in the target

domain, denoted as 6*"" and 1 ”mg " for the textual and visual

modalities, respectlvely. To effectlvely fuse these multi-modal
representations and enhance the cross-modal consistencies, we
propose a multi-modal contrastive enhancement module.

For each user u; € U°, we consider the representations
from different modalities as positive pairs. The positive sample
for user u; is the pair (Atexu Almg "), representing the same
user’s embeddings in the textual and image modalities in target
domain. Negative samples are formed by pairing the represen-
tation of user u; in one modality with the representations of
other users u; # u; in U in the alternative modality. The
contrastive loss for user representations is defined as:

exp (51m (um” Gme! ) /T)

Zueto EXPp (51m (utEXt ame t) /T)

)
where sim(-) denotes a cosine similarity function, 7 > 0 is a
temperature hyperparameter that controls the concentration of
the distribution.

Due to computational constraints, we compute the loss over
mini-batches instead of the entire user set. In each training
iteration, we sample a mini-batch of users, using other users
within the same batch as negative samples.

Similarly, we calculate the contrastive learning loss for the
item side as Li‘lem in a similar way.

By integrating the contrastive learning losses from both
users and items, we define the overall multi-modal contrastive
loss:

-C 1= user + them
cl = .

This combined loss function guides the model to align multi-
modal representations consistently for both users and items,
effectively fusing information across modalities.

(10)

F. Prediction

To construct comprehensive embeddings that integrate
multi-modal information, we concatenate the representations
from different modalities and apply linear transformations
for both users and items. For each user u;, the fused user
representation u! in the target domain is obtained by:

Y

A N
ul =W concat( tex”,uimg )+bu,

where 4" € R? and ulmg € R? are the user’s representa-
tions in the textual and Vlsual modalities. W,, € R?4*? is the
weight matrix for fusion. b, € R? is the bias vector.
Similarly, we can obtain the fused representation of the item
v; in the target domain, denoted as V;.. With the fused user
and item representations, we compute the predicted rating 7;;
as the dot product of the fused user and item representations:

Fij =ul v (12)

We compare the predicted rating 7;; with the ground truth
rating r;; using the MSE loss:

1

— 13
D 13)

(Fi =)
(ui,vj)eD

-£task =



TABLE I
STATISTICS OF THREE CDR TASKS. (OVERLAP DENOTES THE NUMBER OF
OVERLAPPING USERS.)

#Items #Users #Rating
Scenarios
Source  Target | Overlap Source  Target Source Target
Movie2Music 11846 28591 24513 260777 107998 | 1005241 616257
Sport2Phone 61647 39497 | 32243 327849 157150 | 1946125 953738
Electronic2Phone 125025 39497 | 83206 728433 157150 | 5783144 953738

where D is the set of observed user-item interactions in the
training data.

To effectively train the model components, we employ a
two-stage training procedure that separates the optimization of
the diffusion model from the joint optimization of the fusion
and prediction tasks.

In the first stage, we train the diffusion model to generate
accurate representations for users by minimizing the diffusion
loss Lpy defined in Equation 7.

In the second stage, we jointly optimize the task loss and
the contrastive loss defined in Equation 10.

L= Lok +ALa, (14)
where 4 > 0 is a hyperparameter controlling the balance
between the task loss and the contrastive loss.

IV. EXPERIMENT

Extensive experiments are conducted to evaluate the ef-
fectiveness of the proposed model. The experiments aim to
answer the following research questions:

RQ1: Does the proposed MMDCDR outperform the state-
of-the-art CDR methods?

RQ2: How do different components contribute to MMD-
CDR?

RQ3: How do different choices of hyper-parameters affect
the performance of MMDCDR?

A. Experimental Setting

1) Datasets: Following existing methods [6], [15] on CDR,
we evaluate MMDCDR on a real-world recommendation
dataset, namely the Amazon review dataset 1 [38]. We use
the 5-core subsets, in which all users and items have at
least 5 reviews. Specifically, we select five types of datasets:
Movies and TV (Movie), CDs and Vinyl (Music), Sports
and Outdoors (Sport), Cell Phones and Accessories (Phone),
and Electronics (Electronic). These datasets can be divided
into three different cross-domain tasks: Movie2Music (Task
1), Sport2Phone (Task 2), and Electronic2Phone (Task 3).
Statistics of these datasets are listed in Table I.

Thttps://cseweb.ucsd.edu/ jmcauley/datasets/amazon_v2/

2) Evaluation Metrics: Amazon review dataset contains
rating data (0 - 5 score). Following previous work [10],
[15], we adopt Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE) as evaluation metrics to assess the
recommendation performance.

MAE measures the average absolute difference between the
predicted ratings 7;; and the ground truth ratings r;;, and is
defined as:

1
MAE = — |77 —rijl, (15)
|7—| Z J J

@)eT

where 7 denotes the set of user-item pairs in the test set.

RMSE, on the other hand, penalizes larger errors more
heavily by computing the square root of the average squared
differences between predicted and actual ratings:

1
RMSE = 7 Z (Pij —rij)?. (16)

@.j)eT

Both metrics provide complementary insights into predic-
tion accuracy: while MAE offers a more robust measure
against outliers, RMSE emphasizes larger deviations and is
more sensitive to them. Lower values of MAE and RMSE
indicate better predictive performance.

3) Baselines: For a fair comparison, we have selected the
following CDR methods as baselines.

1) CMF [5] shares same embeddings for overlapping users
belonging to different domains.

2) EMCDR [10] follows the embedding and mapping
paradigm, learning a mapping function to transfer user
representations.

3) SSCDR [11] improves upon EMCDR by introducing a
semi-supervised strategy for learning the cross-domain
mapping function.

4) LACDR [12] uses an encoder-decoder structure to
construct a non-linear and more expressive mapping
function.

5) PTUPCDR [15] introduces a personalized transfer
mechanism by designing a meta-network that generates
user-specific bridge functions.

6) P2M2-CDR [39] proposes a privacy-preserving multi-
modal CDR framework that incorporates both textual
and visual modalities of items.

7) DiffCDR [18] introduces diffusion model to transfer
user representations.

4) Implementation and Hyperparameter Setting: In this
paper, we focus on the scenario of cold-start users in the target
domain. Specifically, we only consider the overlapping users
during the training, validation, and testing phases. The pro-
posed method learns to transfer the behavioral preferences of
overlapping users from the source domain to the target domain.
To evaluate the effectiveness of the model, the overlapping
user set U° is divided into training, validation, and testing
subsets. The rating interactions of users in both the source
and target domains within the training set are used to train the
CDR model. Meanwhile, the rating interactions of users in the



TABLE 11
PERFORMANCE COMPARISON OF DIFFERENT BASELINE METHODS.THE BEST AND THE SECOND-BEST PERFORMANCE IS BOLD AND UNDERLINED
RESPECTIVELY.

Task a Metric s CMF EMCDR SSCDR LACDR PTUPCDR P2M2-CDR DiffCDR MMDCDR Improve
0% MAE 1.6044 1.5089 1.0340 1.2501 1.0395 1.0249 1.0238 0.9531 6.91%
‘0
RMSE  2.1247 1.8292 1.3551 1.6208 1.3859 1.2998 1.3310 1.2563 3.35%
. . MAE 1.8033 19113 1.2738 1.4877 1.1913 1.0386 1.1870 0.9752 6.10%
Movie2Music 50% -
RMSE  2.3700 2.2242 1.5843 1.8988 1.6050 1.3334 1.5719 1.2671 4.97%
20% MAE 2.3634 2.2003 1.7012 1.7060 1.3805 1.0761 1.3764 1.0041 6.69%
‘0
RMSE  3.0780 2.5253 2.0550 2.1876 1.8817 1.3360 1.8686 1.2891 3.51%
80% MAE 1.4962 1.4924 1.4027 1.3294 1.0555 1.0709 1.0733 0.9020 14.54%
‘0
RMSE  1.9450 1.7231 1.5634 1.6012 1.3928 1.3884 1.4213 1.1749 15.37%
MAE 1.8313 1.6107 1.4742 1.4397 1.1226 1.0915 1.1214 0.9531 12.68%
Sport2Phone 50% -
RMSE  2.3405 1.8794 1.6976 1.7507 1.4823 1.4015 1.5053 1.3175 5.99%
20% MAE 2.8392 1.9606 1.8515 1.7915 1.3165 1.1201 1.3478 1.1043 1.41%
(o
RMSE  3.4482 2.2481 2.1116 2.1290 1.7480 1.4741 1.7740 1.4131 4.14%
80 MAE 1.4595 1.3762 1.2977 1.2192 1.0440 1.1201 1.1202 0.9020 13.60%
0
RMSE  1.9507 1.6057 1.5179 1.4864 1.3796 1.4253 1.4888 1.2267 11.08%
. MAE 1.4679 1.8947 1.7423 1.3882 1.2414 1.1427 1.2847 0.9195 19.53%
Electric2Phone  50% -
RMSE  1.9726 2.1433 1.9981 1.7442 1.6611 1.4434 1.7076 1.2612 12.62%
20% MAE 1.8073 2.7567 2.5630 2.2415 1.7956 1.1516 1.7618 0.9418 18.22%
‘0
RMSE  2.4277 3.0372 2.8753 2.6691 2.4006 1.4292 2.3365 1.2687 11.24%

target domain within the validation and testing sets serve as
ground truth for evaluating model performance.

We implement our framework using PyTorch. We extract
the title, brand, and category as the textual description of
the item. In Equation 1, we map both the text and image
representations to a 256-dimensional vector. For the denoiser,
we employ a 3-layer perceptron with 512 hidden units. The
dropout probability for the conditional input is set to 10%.
In Equation 14, A is set to 0.2 to balance the task loss
and the contrastive loss. The temperature hyperparameter of
contrastive loss is set to 0.02. Additionally, the inference
process of DM typically involves numerous reverse steps,
making direct sampling computationally expensive and time-
consuming. To improve inference efficiency, we draw inspi-
ration from existing studies [40], [41] and adopt the DPM
solver, a well-established fast sampling solver, to accelerate
the sampling process. The number of function evaluations used
in the DPM solver is 50. The layers of perceptrons L in the
noise estimation network is selected from {2, 3,4, 5}, and the
diffusion step R is selected from{1000, 3000, 5000, 7000}. We
perform all the experiments on NVIDIA GeForce RTX 3090
GPUs.

All baselines are conducted based on their GitHub source
code. All models are trained for 30 epochs to achieve conver-
gence. We employ the same fully connected layer to facilitate
comparison for the cross-domain bridge functions of EMCDR,
SSCDR, and PTUPCDR. To ensure a fair comparison with
P2M2-CDR, we employ the same item images and textual

descriptions as in our method, processing them using the
same pre-trained model. For each task and method, the initial
learning rate for the Adam [42] optimizer is tuned by grid
searches within {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1}. In
our experiments, we vary the proportion a of overlapping
users included in the training dataset, setting it to 80%, 50%,
and 20% of the total overlapping user base. The remaining
overlapping users are divided equally between the validation
and test sets in a 1:1 ratio.

B. Performance Comparisons (RQ1)

We compare the performance of MMDCDR with several
baseline methods under cold-start scenarios, and the experi-
mental results are presented in Table II. From these results,
it can be observed that MMDCDR consistently outperforms
all baseline models across various tasks. Specifically, under
the experimental setting of « value at 80%, MMDCDR out-
performs the existing SOTA in MAE by 6.91%, 14.54%, and
13.60% in three CDR tasks.

Compared to ID-based methods (e.g., Diff CDR, PTUPCDR,
LACDR, SSCDR, EMCDR, and CMF), MMDCDR demon-
strates a significant performance advantage, particularly in
scenarios with limited training data. According to the exper-
imental results, DiffCDR and PTUPCDR exhibit noticeable
advantages only when the training data volume is highest,
i.e., when proportion @ = 80%, and their advantage quickly
diminishes as the training data decreases. This trend highlights
the intrinsic limitation of ID-based paradigms: they fail to



TABLE III
MODEL PERFORMANCE OF ABLATION STUDY. THE BEST RESULTS ARE BOLD.

Movie2Music Sport2Phone Electric2Phone

Methods 80% 50% 20% 80% 50% 20% 80% 50% 20%

MAE RMSE MAE RMSE  MAE RMSE MAE RMSE MAE RMSE MAE RMSE  MAE RMSE  MAE RMSE MAE RMSE
w/o diff 1.0399 1.3269 1.0904  1.3827 1.1189 13909 1.0872 1.3582 1.1590  1.4501 1.3021 1.6819  1.0278  1.2992  1.1870 1.4990 1.2526 1.5946
w/o mm 1.0885 1.5236 12234 1.7748 15610 2.2541 1.3887 1.8933  1.5742 2.0928 1.7295 2.3425 12179 1.6409 1.5311 1.9209 1.8628  2.5099
w/o image 1.0651 1.3528 1.1042 14128 1.1297 14712 12436  1.5718 1.3457 1.6746 14475 18486 1.1826 1.5386 1.3750 1.7211 1.3963  1.7070
w/o text 1.0559 1.3545 1.1891 1.5099  1.1567 1.4866 1.2846 1.6141 12904  1.6469  1.5161 1.8838  1.0823  1.2816  1.1092  1.3820 1.1709 1.5161
w/o cl 0.9667 1.2769 1.0010  1.2827 1.1119  1.3679 0.9643 12526  1.0070  1.3341  1.1645 14363 1.0611 13732 1.0847 1.4247 1.1269 1.4524
MMDCDR  0.9531 1.2563 09752  1.2671 1.0041 1.2891 0.9020 1.1749 09531 1.3175 1.1043 1.4131 0.9020 1.2267 09195 1.2612 0.9418 1.2687

generalize well to unseen or infrequent entities due to the 4) w/o image: it removes item image features when learn-

lack of sufficient interaction signals. In contrast, multi-modal
information provides fine-grained semantic representations of
items, which are independent of interaction sparsity. These
rich content features enable the model to better infer user
preferences for novel or rarely interacted items, thereby alle-
viating the cold-start challenge. MMDCDR benefits from this
modality-rich representation by incorporating both textual and
visual features into the diffusion framework, enabling robust
learning even in severely underrepresented regions of the data.

Moreover, while both MMDCDR and DiffCDR adopt a dif-
fusion model framework, MMDCDR significantly outperforms
DiffCDR across all evaluated scenarios. This performance gap
underscores the value of integrating multi-modal information
within the diffusion process. Rather than relying solely on
user and item ID embeddings, which are often brittle under
cold-start conditions, MMDCDR leverages a broader and more
informative feature space, leading to improved transferability
and generalization.

In addition, our approach consistently surpasses another
multi-modal-based model, P2M2-CDR, which highlights the
importance of the underlying architecture in exploiting multi-
modal signals. The superior performance of MMDCDR sug-
gests that the diffusion-based modeling of latent user-item
interaction patterns enables more expressive and structured
knowledge transfer across domains. These results collectively
underscore the effectiveness of combining multi-modal repre-
sentations with a diffusion modeling framework, positioning
MMDCDR as a robust and scalable solution for cold-start
cross-domain recommendation tasks.

C. Ablation Study (RQ2)

In this section, we conduct an ablation study to evaluate the
effectiveness of various components in MMDCDR. Specifi-
cally, we design the following five model variants.

1) w/o diff: it replaces the diffusion model in the original
framework with an MLP.

2) w/o mm: it replaces multi-modal information with ID
collaborative information.

3) w/o text: it removes item text features when learning
item representations.

ing item representations.
w/o cl: it disables the modality-aware contrastive aug-
mentation.

5)

The results of the ablation experiments are shown in
Table III. The results indicate that each component of the
MMDCDR contributes significantly to its overall performance.
Specifically, disabling the DM and replacing it with a simple
MLP leads to a notable decline in performance. This finding
underscores the importance of the diffusion mechanism in
capturing the complex, dynamic transfer of knowledge across
domains. Furthermore, when the multi-modal features are
disabled, the model’s performance experiences a substantial
decrease, reinforcing the idea that multi-modal information
plays a crucial role in extracting fine-grained item charac-
teristics and capturing user behavioral preferences. When the
model is restricted to using only text or image informa-
tion, performance reductions are observed, but they remain
moderate. This indicates that both text and image modalities
offer complementary information to the recommendation pro-
cess. Additionally, removing the modality-aware contrastive
augmentation module results in further performance drops.
This finding highlights the critical role of contrastive learning
in improving the alignment and fusion of multi-modal data.
By emphasizing consistent features across modalities, this
module enhances the model’s ability to effectively integrate
textual and visual information, leading to more accurate and
coherent item representations. Overall, the ablation studies
provide strong evidence that each component of MMDCDR
contributes synergistically to its superior performance in cross-
domain recommendation tasks.

D. Parameter Sensitivity Analysis (RQ3)

In this section, we investigate the impact of two key
hyperparameters on model performance: (1) the number of
perceptron layers L in the noise estimation network, and (2)
the number of diffusion steps R in the forward process. The
analysis is conducted under three different overlapping user
ratios (a 80%, 50%, 20%) to evaluate model robustness
in varying cold-start scenarios. Specifically, Figures 3 and 5
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Fig. 6. Performance with different number of diffusion steps on Sport2Phone.

report results on the Movie2Music task, while Figures 4 and 6
present results on the Sport2Phone task.

1) Impact of the Number of Perceptron Layers: Figures 3
and 4 show the model’s MAE and RMSE performance with
varying numbers of perceptron layers L in the denoising
network (2, 3, 4, 5). The results across both datasets indicate
that increasing the number of layers generally leads to a
degradation in performance, especially under lower « values.

This is likely due to overfitting caused by increased model
complexity in data-sparse scenarios.

On Movie2Music, the optimal performance is achieved with
3 layers, beyond which both MAE and RMSE begin to rise.
A similar trend is observed on Sport2Phone, where deeper
networks (4 or 5 layers) show degraded performance. These
observations suggest that a relatively shallow denoising model
(e.g., 3 layers) is sufficient and more stable across different
data scales.

2) Impact of the Number of Diffusion Steps: Figures 5
and 6 depict the model’s performance with different numbers
of diffusion steps R (1000, 3000, 5000, 7000) during the
forward process. In both datasets, we observe a clear trend:
increasing the number of diffusion steps consistently improves
model accuracy.

On Movie2Music, both MAE and RMSE decrease substan-
tially as the number of steps increases from 1000 to 5000,
with marginal improvements beyond 5000. This indicates that
increasing the number of steps helps the model better capture
the underlying data distribution up to a point, after which
additional steps bring diminishing returns. On Sport2Phone,
the performance shows a steep improvement when the number
of diffusion steps increases from 1000 to 3000, especially
under lower « values. However, beyond 3000 steps, the
performance gains become more gradual, and the curves begin
to plateau. This suggests that on this dataset, 3000 steps
are sufficient to achieve most of the benefit of the diffusion
process. These results demonstrate that while increasing the
number of diffusion steps generally enhances the model’s
generative and predictive capabilities, the optimal number of
steps may vary across datasets.

V. CONCLUSION

In this paper, we focus on addressing the cold-start prob-
lem through cross-domain recommendation. Existing methods
predominantly rely on ID-based collaborative information for
CDR, which limits their effectiveness when faced with new
or rarely-interacted items. To overcome these limitations, we
propose a multi-modal diffusion model for CDR. By extracting
the multi-modal representations of items, we can disentangle
item fine-grained features, thereby gaining a deeper under-
standing of users’ behavioral preference. The use of multi-
modal features not only enriches item embeddings but also
enhances the generalization ability of the model in cold-start
settings. Furthermore, to enable effective knowledge transfer
between domains, we employ a conditional diffusion model
as the backbone of our architecture. The diffusion framework
is capable of modeling complex and high-dimensional data
distributions, which allows our model to capture intricate
relations across source and target domains. In addition, we
introduce a modality-aware contrastive augmentation strategy
to strengthen the consistency and alignment between multi-
modal item representations. Extensive experiments conducted
on multiple benchmark datasets confirm the superiority of
MMDCDR over existing state-of-the-art CDR methods.



[1]

[2]

[3

=

[5

—

[6

=

[7

—

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

Y. Wang, X. Wang, X. Huang, Y. Yu, H. Li, M. Zhang, Z. Guo,
and W. Wu, “Intent-aware recommendation via disentangled graph
contrastive learning,” in IJCAI, 2023, pp. 2343-2351.

Y. Lu, C. Wang, P. Lai, and J. Lai, “PKAT: pre-training in collaborative
knowledge graph attention network for recommendation,” in ICDM,
2023, pp. 448-457.

L. Wang, B. Jin, Z. Huang, H. Zhao, D. Lian, Q. Liu, and E. Chen,
“Preference-adaptive meta-learning for cold-start recommendation,” in
IJCAL 2021, pp. 1607-1614.

Z.Li, J. Wang, Z. Chen, K. Wu, Y. Wei, and H. Huang, “Adaptive graph
neural networks for cold-start multimedia recommendation,” in /CDM,
2024, pp. 201-210.

A. P. Singh and G. J. Gordon, “Relational learning via collective matrix
factorization,” in SIGKDD, 2008, pp. 650-658.

C. Sun, J. Gu, B. Hu, X. Dong, H. Li, L. Cheng, and L. Mo, “REMIT:
reinforced multi-interest transfer for cross-domain recommendation,” in
AAAI, 2023, pp. 9900-9908.

C. Zhao, C. Li, R. Xiao, H. Deng, and A. Sun, “CATN: cross-domain
recommendation for cold-start users via aspect transfer network,” in
SIGIR, 2020, pp. 229-238.

Z. Lin, W. Huang, H. Zhang, J. Xu, W. Liu, X. Liao, F. Wang, S. Wang,
and Y. Tan, “Enhancing dual-target cross-domain recommendation with
federated privacy-preserving learning,” in IJCAI, 2024, pp. 2153-2161.
W. Liu, C. Chen, X. Liao, M. Hu, J. Yin, Y. Tan, and L. Zheng, “Fed-
erated probabilistic preference distribution modelling with compactness
co-clustering for privacy-preserving multi-domain recommendation,” in
1JCAL 2023, pp. 2206-2214.

T. Man, H. Shen, X. Jin, and X. Cheng, “Cross-domain recommendation:
An embedding and mapping approach,” in IJCAI, 2017, pp. 2464-2470.
S. Kang, J. Hwang, D. Lee, and H. Yu, “Semi-supervised learning for
cross-domain recommendation to cold-start users,” in CIKM, 2019, pp.
1563-1572.

T. Wang, F. Zhuang, Z. Zhang, D. Wang, J. Zhou, and Q. He, “Low-
dimensional alignment for cross-domain recommendation,” in CIKM,
2021, pp. 3508-3512.

Y. Zhu, K. Ge, F. Zhuang, R. Xie, D. Xi, X. Zhang, L. Lin, and Q. He,
“Transfer-meta framework for cross-domain recommendation to cold-
start users,” in SIGIR, 2021, pp. 1813-1817.

Y. Zhu, R. Xie, F. Zhuang, K. Ge, Y. Sun, X. Zhang, L. Lin, and
J. Cao, “Learning to warm up cold item embeddings for cold-start
recommendation with meta scaling and shifting networks,” in SIGIR,
2021, pp. 1167-1176.

Y. Zhu, Z. Tang, Y. Liu, F. Zhuang, R. Xie, X. Zhang, L. Lin, and
Q. He, “Personalized transfer of user preferences for cross-domain
recommendation,” in WSDM, 2022, pp. 1507-1515.

Z. Yuan, F. Yuan, Y. Song, Y. Li, J. Fu, F. Yang, Y. Pan, and Y. Ni,
“Where to go next for recommender systems? ID- vs. modality-based
recommender models revisited,” in SIGIR, 2023, pp. 2639-2649.

X. Zhang, B. Xu, F. Ma, C. Li, L. Yang, and H. Lin, “Beyond co-
occurrence: Multi-modal session-based recommendation,” /EEE Trans.
Knowl. Data Eng., vol. 36, no. 4, pp. 1450-1462, 2024.
Y. Xuan, “Diffusion cross-domain recommendation,”
abs/2402.02182, 2024.

P. Dhariwal and A. Q. Nichol, “Diffusion models beat gans on image
synthesis,” in NeurIPS, 2021, pp. 8780-8794.

J. Ho and T. Salimans, “Classifier-free diffusion guidance,” CoRR, vol.
abs/2207.12598, 2022.

X. Ye, Y. Li, and L. Yao, “DREAM: decoupled representation via
extraction attention module and supervised contrastive learning for
cross-domain sequential recommender,” in RecSys, 2023, pp. 479-490.
X. Li, J. Sheng, J. Cao, W. Zhang, Q. Li, and T. Liu, “CDRNP:
cross-domain recommendation to cold-start users via neural process,”
in WSDM, 2024, pp. 378-386.

L. Ma, Y. Li, Z. Mai, F. Liang, C. Wang, M. Chen, and M. Guizani,
“Cross-store next-basket recommendation,” in /CDM, 2024, pp. 301-
310.

R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-
resolution image synthesis with latent diffusion models,” in CVPR, 2022,
pp. 10674-10685.

Z. Li, A. Sun, and C. Li, “Diffurec: A diffusion model for sequential
recommendation,” ACM Transactions on Information Systems, vol. 42,
no. 3, pp. 1-28, 2023.

CoRR, vol.

[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

(35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

W. Wang, Y. Xu, F. Feng, X. Lin, X. He, and T. Chua, “Diffusion
recommender model,” in SIGIR, 2023, pp. 832-841.

Y. Jiang, Y. Yang, L. Xia, and C. Huang, “DiffKG: Knowledge graph
diffusion model for recommendation,” in WSDM, 2024, pp. 313-321.
H. Ma, Y. Yang, L. Meng, R. Xie, and X. Meng, “Multimodal condi-
tioned diffusion model for recommendation,” in WWW, 2024, pp. 1733—
1740.

Q. Liu, E. Yan, X. Zhao, Z. Du, H. Guo, R. Tang, and F. Tian, “Diffusion
augmentation for sequential recommendation,” in CIKM, 2023, pp.
1576-1586.

J. Chen, H. Zhang, X. He, L. Nie, W. Liu, and T. Chua, “Attentive
collaborative filtering: Multimedia recommendation with item- and
component-level attention,” in SIGIR, 2017, pp. 335-344.

X. Chen, H. Chen, H. Xu, Y. Zhang, Y. Cao, Z. Qin, and H. Zha,
“Personalized fashion recommendation with visual explanations based
on multimodal attention network: Towards visually explainable recom-
mendation,” in SIGIR, 2019, pp. 765-774.

Y. Wei, X. Wang, L. Nie, X. He, R. Hong, and T. Chua, “MMGCN:
multi-modal graph convolution network for personalized recommenda-
tion of micro-video,” in MM, 2019, pp. 1437-1445.

H. Hu, W. Guo, Y. Liu, and M. Kan, “Adaptive multi-modalities fusion
in sequential recommendation systems,” in CIKM, 2023, pp. 843-853.
H. Zhou, X. Zhou, L. Zhang, and Z. Shen, “Enhancing dyadic relations
with homogeneous graphs for multimodal recommendation,” in ECAI,
vol. 372, 2023, pp. 3123-3130.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “RoBERTa: A robustly optimized
BERT pretraining approach,” CoRR, vol. abs/1907.11692, 2019.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words:
Transformers for image recognition at scale,” in /CLR, 2021.

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in MICCAI, vol. 9351, 2015,
pp. 234-241.

J. Ni, J. Li, and J. McAuley, “Justifying recommendations us-
ing distantly-labeled reviews and fine-grained aspects,” in (EMNLP-
IJCNLP), 2019, pp. 188-197.

L. Wang, L. Sang, Q. Zhang, Q. Wu, and M. Xu, “A privacy-preserving
framework with multi-modal data for cross-domain recommendation,”
Knowl. Based Syst., vol. 304, p. 112529, 2024.

C. Lu, Y. Zhou, F. Bao, J. Chen, C. Li, and J. Zhu, “DPM-Solver: A
fast ODE solver for diffusion probabilistic model sampling in around
10 steps,” in NeurIPS, 2022.

F. Bao, C. Li, J. Zhu, and B. Zhang, “Analytic-DPM: an analytic estimate
of the optimal reverse variance in diffusion probabilistic models,” in
ICLR, 2022.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in ICLR, 2015.



